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лабораторией искусственного интеллекта Санкт–Петербургского отделения 

Математического института им. В.А. Стеклова (поми ран)

В  г о л о в о к р у ж и т е л ь н о м  с к ач к е  A I–т е х н о л о г и й  м о ж н о 
в ы д е л и т ь  т р и  р е в о л ю ц и и ,  к а ж д а я  и з  к о т о р ы х  м е н я л а  н а ш и 

п р е д с та в л е н и я  о  в о з м о ж н о с т я х  и с к у с с т в е н н о г о  и н т е л л е к та . 
С е г о д н я  м о ж н о  г о в о р и т ь  о  к о н т у ра х  с л е д у ю щ е й ,  к о т о р ы е 

у ж е   н е с л о ж н о  ра з л и ч и т ь  в  т у м а н е  б уд у щ е г о .

Двадцать пять лет назад, на пороге нового тысячеле­
тия, сильный искусственный интеллект казался да­
лёкой, а то и несбыточной мечтой. Нейронные сети 
существовали только в академической среде, перед­
ним краем искусственного интеллекта были рекомен­
дательные системы и поиск в интернете, а идея ма­
шины, способной поддержать осмысленный разговор 

или создать произведение искусства, оставалась уде­
лом фантастов.

Сегодня AI–системы пишут код, ставят медицин­
ские диагнозы, создают музыку и изображения, ведут 
переговоры и даже помогают в научных исследовани­
ях. Более того, они уже начинают участвовать в раз­
работке следующего поколения AI–систем. В этой ста­
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тье мы рассмотрим этапы развития технологии и за­
глянем в будущее.

Революция глубокого обучения: когда нейросети 
наконец заработали
Начало пути. История искусственных нейронных се­
тей началась ещё до того, как AI оформился как науч­

ная дисциплина. Первые математические модели ней­
ронов и их взаимодействий появились уже в 1940–х 
годах, а перцептрон Розенблатта, который в 1958 го­
ду стал одной из первых реализованных на практи­
ке моделей машинного обучения, был по сути моде­
лью одного нейрона. Метод обратного распростране­
ния ошибки, которым обучаются глубокие нейросети, 
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представляет со­
бой просто диф­
ференцирование 
сложной функ­
ции и к нейросе­
тям был успеш­
но п ри менён 
уже в 1970–х.

Но  в  XX  веке 
нейросети оста­
вались скорее 
предметом ака­
демических ис­
с л е д о в а н и й , 
чем  практиче­
с к и м и нс т ру­
ментом. Они ра­
ботали на  игру­
шечных задачах 
и демонстрировали принципиальную возможность 
своего обучения, но неизменно проигрывали более 
простым методам. «Нейросети — это второй лучший 
способ сделать всё что угодно», — говорил в начале 
1990–х Джон Денкер.

Революция глубокого обучения. Всё изменилось в се­
редине 2000–х. С математической, идейной стороны 
Джеффри Хинтон и его коллеги представили новый 
способ, который позволял обучать глубокие нейрон­
ные сети; аналогичный прорыв произошёл и в груп­
пе Йошуа Бенджи.

Но даже важнее, чем новые алгоритмические идеи, 
было то, что технологическая база к этому времени 
тоже созрела для  успеха нейросетей. Графические 
процессоры (GPU), изначально созданные для трёх­
мерной графики в видеоиграх, оказались идеальным 
инструментом для обучения нейросетей. Матричные 
операции, составляющие основу вычислений в ней­
ронных сетях, выполнялись на GPU в десятки и сот­
ни раз быстрее, чем на обычных процессорах. Одно­
временно развитие интернета породило огромный 
поток данных: миллионы изображений, тысячи ча­
сов видео, терабайты текста. У нейросетей наконец–
то появилось и достаточно мощное «железо», и пища 
для обучения.

Нейросети шагают по планете. Первой практически 
важной областью применения нейросетей стало тог­
да распознавание речи: появившиеся в начале 2010–х 
голосовые ассистенты были бы невозможны без обра­
ботки речевых сигналов теми самыми глубокими се­
тями Хинтона.

Символическим моментом революции стал 
2012 год, когда на главном соревновании по распо­
знаванию изображений (на  датасете ImageNet) ко­

манда Джеффри 
Хинтона пред­
ставила свёрточ­
ную нейронную 
сеть AlexNet. Она 
не  просто побе­
дила, она уни­
чтожила конку­
рентов, снизив 
л у чший пока­
затель ошибки 
с  26 % примерно 
до  14 %. Это был 
огромный каче­
ственный ска­
чок, и  с  тех пор 
каждый год по­
бедителями это­
го соревнования 

становились исключительно нейронные сети (архи­
тектуры которых, конечно, менялись и улучшались 
со временем).

А в 2016 году AlphaGo, основанная на глубоких ней­
ронных сетях, победила Ли Седоля, одного из веду­
щих профессионалов в игре го. Ранее эта игра всег­
да считалась слишком сложной для  компьютеров 
из–за астрономического числа возможных позиций 
(поиск по дереву в го не работает совсем), и победы 
AlphaGo не ожидал практически никто — ни профес­
сионалы го, ни специалисты по искусственному ин­
теллекту.

За эти 10 лет глубокие нейросети стали доминиру­
ющей парадигмой в машинном обучении. Но у них 
были свои ограничения. Свёрточные сети хорошо ра­
ботали с изображениями, рекуррентные — с после­
довательностями вроде текста или временных рядов, 
но каждая архитектура была заточена под свой тип 
данных, обучение оставалось медленным, а масшта­
бирование — проблематичным.

Революция трансформеров
Что такое трансформер. В 2017 году группа исследо­
вателей из Google опубликовала статью с провокаци­
онным названием Attention is All You Need («Внима­
ние — это всё, что вам нужно»). В ней описывалась 
новая архитектура нейронных сетей  — трансфор­
мер (Transformer). На первый взгляд это была просто 
ещё одна архитектура для обработки последователь­
ностей, конкурент для классических рекуррентных 
нейронных сетей. Но быстро стало ясно, что это не­
что большее.

Ключевая идея трансформеров — механизм само­
внимания (self–attention). Представьте, что вы читае­
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те предложение: 
«Кошка, кото­
рая жила у  со­
седей и которую 
я  часто видел 
во дворе, убежа­
ла». Чтобы по­
нять, кто именно 
убежал, вам нуж­
но связать слово 
«убежала» со сло­
вом «кошка», хотя 
между ними мно­
го других слов. 
Рекуррентные се­
ти обрабатыва­
ли текст после­
довательно, слово 
за  словом, и  с  тру­
дом могли обраба­
тывать даже такие 
связи в  пределах 
одного предложе­
ния, не  говоря уже 
о более далёких. Са­
мовнимание позво­
ляет каждому сло­
ву «смотреть» на все 
остальные слова од­
новременно и решать, 
какие из  них важны 
для  понимания кон­
текста.

От  языка к  другим 
модальностям. Эта 
простая идея оказа­
лась невероятно пло­
дотворной. В  2018  го­
ду появилась модель 
BERT, которая могла 
читать тексты и  пони­
мать их  гораздо глуб­
же, чем  все предыду­
щие; здесь «понимать» означает преобразовывать 
в семантически богатые представления, при помощи 
которых потом можно решать разные задачи. В пару 
к BERT появилось и семейство моделей GPT, о кото­
рых мы поговорим ниже.

Но  революция трансформеров оказалась шире, 
чем просто обработка текста. Исследователи быстро 
поняли, что та же архитектура работает и для изо­
бражений (в 2020 году вышел Vision Transformer, ко­
торый стал основой для очень многих архитектур), 

и для  звука, и для ви­
део. Идея самовнима­
ния оказалась универ­
сальной. Более того, 
трансформеры можно 
было комбинировать 
с другими типами се­
тей, создавая гибрид­
ные архитектуры.

М а с ш т а б и р о в а -
ние. Но, пожалуй, са­
мое важное свойство 
трансформеров  — 
это их  способность 
к масштабированию. 
Трансформеры мож­
но разделить на ты­
сячи параллельных 
вычислений и  об­
учать на  сотнях 
и  тысячах GPU од­
новременно. Ис­
следователи об­
наружили удиви­
тельный эмпири­
ческий закон: ка­
чес т во работ ы 
трансформеров 
предсказуемо ра­
стёт с увеличени­
ем размера моде­
ли, объёма дан­
ных и  вычисли­
тельных ресур­
сов.

Э т и за коны 
м а с ш т а б и р о ­
вания (scaling 
laws) перевер­
н ул и  и н д у ­
стрию. Раньше 

прогресс в машин­
ном обучении достигался в основном за счёт новых 

архитектурных решений, новых моделей. А теперь по­
явилась простая, почти механическая формула успе­
ха: больше параметров, больше данных, больше вы­
числений — лучше результат, причём предсказуемо 
лучше. Это породило «гонку вооружений», результаты 
которой мы видим сегодня.

Революция языковых моделей
Откуда взять данные? Но и это ещё не всё. То самое 
масштабирование привело к тому, что размеченных 
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данных для обучения стало категорически не хва­
тать. Когда модели стали содержать миллиарды па­
раметров, большие датасеты «обычного» глубокого 
обучения, вроде ImageNet, перестали казаться боль­
шими.

Решение пришло из неожиданной области. Вместо 
того чтобы размечать данные вручную, можно ис­
пользовать задачи с саморазметкой (self–supervision), 
где правильные ответы получаются автоматически, 
без участия людей. Самая естественная такая зада­
ча для текста — языковое моделирование (language 
modeling): предсказание следующего слова по преды­
дущим. Возьмите любой текст из интернета, оборвите 
в случайном месте и попросите модель предсказать 
следующее слово — и вот у вас уже есть обучающий 
пример. А в интернете триллионы слов.

Языковые модели. Задача языкового моделирования, 
кстати, тоже была всегда. Ещё в 1913 году Андрей Ан­
дреевич Марков построил вероятностную модель по­
следовательностей букв в «Евгении Онегине» — пер­
вую языковую модель в истории. Простые языковые 
модели десятилетиями использовались в распозна­
вании речи и машинном переводе, помогая выбрать 
более вероятный вариант интерпретации. Но, конеч­
но, никто не ожидал, что они смогут писать связный 
текст или отвечать на сложные вопросы.

И здесь сработало масштабирование трансформеров. 
В 2018 году OpenAI выпустила GPT — первую большую 
языковую модель на основе трансформеров. В 2019–м 
появилась GPT–2 с 1,5 млрд параметров, которая уже 
могла порождать довольно убедительные тексты. Ис­
следователи из  OpenAI даже побоялись выклады­
вать её в открытый доступ. В 2020–м вышла GPT–3 
со 175 млрд параметров — и тут стало окончательно 
ясно, что происходит что–то экстраординарное.

GPT–3 могла не просто порождать убедительный 
текст. Она могла переводить, резюмировать, отвечать 
на вопросы, писать код, сочинять стихи — и всё это 
без дополнительного обучения на конкретных зада­
чах, просто на основе нескольких примеров в запро­
се. Модель могла обобщаться на новые задачи прямо 
во время использования.

Всё это уже произвело революцию в  академиче­
ских кругах, но на публику она вышла только в ноя­
бре 2022 года, когда OpenAI выпустила ChatGPT. Это 
была та же GPT–3, но дообученная на диалогах и с ис­
пользованием обратной связи от людей (reinforcement 
learning from human feedback, RLHF). ChatGPT мог под­
держивать связный разговор, помнить контекст, 
признавать ошибки, отвечать на поставленные во­
просы и отказываться от неподходящих запросов. 
И им могли пользоваться все — через простой веб–
интерфейс.

Скорость прогресса. За 5 дней ChatGPT набрал мил­
лион пользователей. За 2 месяца — 100 млн. Это бы­
ла самая быстрорастущая потребительская техноло­
гия в истории. Дальше были GPT–4 и GPT–5 от OpenAI, 
семейства Claude от Anthropic и Gemini от Google, се­
мейства открытых моделей вроде Llama или DeepSeek 
и многое другое. Началась гонка больших языковых 
моделей (large language models, LLM).

Сегодня LLM помогают программистам писать код, 
юристам — анализировать договоры, врачам — фор­
мулировать диагнозы, студентам — учиться, писате­
лям — бороться с творческим кризисом. Они встро­
ены в  поисковики, текстовые редакторы, системы 
разработки. Большими языковыми моделями так 
или иначе пользуются сотни миллионов людей еже­
дневно.

И прогресс не останавливается. В 2022 году GPT–3 
было нелегко справиться с задачами для третьекласс­
ников вроде «У Васи было три теннисных мячика, и он 
купил ещё две упаковки по четыре; сколько у него те­
перь мячиков?» А в 2025–м GPT–5 и Gemini 2.5 Pro уже 
способны самостоятельно решать сложные матема­
тические задачи, как олимпиадные, так и исследова­
тельские. Важным прорывом здесь стали рассуждаю­
щие модели (reasoning models), которые сначала «обду­
мывают» задачу «на черновике», а только потом на­
чинают выдавать ответ. На основе современных LLM 
уже создаются системы, которые способны произво­
дить новые научные результаты, — и это только на­
чало пути.

Пожалуй, самое поразительное здесь не конкретные 
достижения, а как раз скорость прогресса. Закон Му­
ра для AI работает с удвоением производительности 
не каждые 2 года, а каждые несколько месяцев. Зада­
чи, которые казались серьёзным вызовом год назад, 
сегодня решаются почти идеально. Количество вы­
числений, требующееся для обучения передовых мо­
делей, удваивается примерно каждые 6 месяцев. Мы 
живём в  эпоху языковых моделей, которые прямо 
сейчас меняют мир в самых разных областях, и экс­
поненциальный прогресс никак не хочет останавли­
ваться…

Какой будет четвёртая революция?
Заглянуть в будущее всегда сложно, но кое–что мы 
уже видим. Четвёртая революция в AI, похоже, будет 
обеспечена не одним прорывом, а несколькими па­
раллельными направлениями, которые могут сой­
тись неожиданным образом.

Новые архитектуры. Несмотря на доминирование 
трансформеров, у них есть фундаментальные огра­
ничения. Главное — квадратичная сложность меха­
низма внимания: каждый токен должен «посмотреть» 
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на все остальные токены, что означает, что вычисле­
ния растут пропорционально квадрату длины тек­
ста. Для контекста в миллионы токенов это становит­
ся вычислительно невозможным. Кроме того, у транс­
формеров нет настоящей памяти — они всегда обраба­
тывают весь контекст заново.

В последние годы появляются альтернативы: SSM 
(State Space Models) вроде Mamba с линейной слож­
ностью и встроенной памятью, архитектуры с разре­
женным вниманием, семейство JEPA (Joint Embedding 
Predictive Architecture) от Яна Лекуна и так далее. Пока 
неясно, какая из этих идей «выстрелит», но поиск ар­
хитектуры следующего поколения уже идёт полным 
ходом.

Мультимодальность и воплощённый AI. Сегодняшние 
модели всё ещё в основном работают с текстом и изо­
бражениями. Но человеческий интеллект развивал­
ся во взаимодействии с физическим миром — через 
прикосновения, движение, манипуляцию объектами. 
Есть гипотеза, что для создания по–настоящему об­
щего интеллекта нужен воплощённый AI (embodied 
AI) — искусственный интеллект, который учится че­
рез непосредственный опыт некоего физического 
агента.

Уже появляются модели мира (world models), кото­
рые учатся предсказывать последствия действий 
в  визуальной или  тактильной среде. Роботы с  AI–
управлением начинают справляться со  сложными 
задачами манипуляции. Многие компании сейчас 
работают над человекоподобными роботами, управ­
ляемыми большими мультимодальными моделями. 
Возможно, следующий прорыв придёт именно отсю­
да, когда AI научится не просто рассуждать о мире, 
но и действовать в нём.

Агентные системы. Современные LLM отвечают 
на запросы, но в основном пассивны. Агентные систе­
мы должны быть способны ставить себе цели, пла­
нировать, использовать инструменты, взаимодей­
ствовать с окружающей средой и другими агентами 
для достижения долгосрочных целей. Уже существу­
ют прототипы, которые могут пользоваться компью­
тером и браузером, выполнять последовательности 
действий, реализовывать целые программистские 
проекты.

Но настоящие агенты потребуют решения проблем 
надёжности, безопасности и согласования (alignment) 
целей AI с человеческими ценностями. Агент, кото­
рый может действовать автономно, потенциально го­
раздо опаснее, чем пассивный помощник.

AI для науки. И здесь мы подходим к самому голо­
вокружительному сценарию. В 2024 году появились 
системы вроде FunSearch от  Google DeepMind, от­
крывшей новые математические результаты, или AI 

Scientist от Sakana AI, способной проводить полный 
цикл научного исследования, от гипотез через экспе­
рименты до готовой статьи. LLM уже помогают до­
казывать теоремы, предсказывать структуры белков, 
искать новые материалы.

Что  будет, когда AI станет не  просто помощни­
ком учёного, а  самостоятельным исследователем? 
А что будет, когда AI–системы начнут проводить ис­
следования в области самого искусственного интел­
лекта?

Многие слышали о технологической сингулярно­
сти, моменте, когда прогресс становится настолько 
быстрым, что люди уже не могут уследить за ним. 
До недавних пор эти рассуждения были чистой фан­
тастикой. Но сейчас кажется, что если AI сможет луч­
ше людей проводить исследования в  области AI, 
то такая система сможет улучшать сама себя, созда­
вая следующее поколение ещё более мощных систем, 
и этот процесс сможет развиваться экспоненциально 
без участия людей — та самая сингулярность.

Что будет в таком случае, не знает никто. Есть и уто­
пические варианты прогнозов  (решение всех науч­
ных и технологических проблем человечества, дости­
жение изобилия, даже потенциального бессмертия), 
и экзистенциальные риски: если мы создадим систе­
мы умнее нас самих и их цели вдруг окажутся несо­
вместимы с человеческим выживанием, человечество 
может и не сохранить контроль за будущим. Но важно, 
что все эти прогнозы и варианты очень, очень близ­
ки; в сфере искусственного интеллекта пессимиста­
ми считаются те, кто откладывает свой прогноз до­
стижения сверхчеловеческого интеллекта на середи­
ну 2030–х, а оптимисты предсказывают это уже в на­
шем десятилетии…

Мы живём в уникальное время — возможно, самое 
важное в истории человечества. За четверть века ис­
кусственный интеллект прошёл путь от набора раз­
розненных методов с достаточно узкой сферой приме­
нимости до технологий, которые трансформируют все 
аспекты нашей жизни. Три революции — глубокого 
обучения, трансформеров и языковых моделей — из­
менили не только наши технологии, но и наше пред­
ставление о возможном.

Следующие несколько лет будут определяющими. 
Четвёртая революция уже началась, но мы ещё не зна­
ем её имени. Выборы, которые мы, как исследовате­
ли, разработчики, регуляторы, пользователи, сдела­
ем сейчас, могут определить траекторию развития 
не только AI как науки, но и человечества в целом. 
У нас есть уникальная возможность сознательно на­
править развитие самой мощной технологии в исто­
рии. Будем ли мы достаточно мудры, чтобы восполь­
зоваться ею?
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