SIR, ИДЕЯ ВАРИАЦИОННЫХ ПРИБЛИЖЕНИЙ

Сергей Николенко СПбГУ— Санкт-Петербург 6 апреля 2024 г.

Random facts:

- 6 апреля в ООН Международный день спорта на благо развития и мира, а в России День работника следственных органов
- 6 апреля 1712 г. началось Нью-Йоркское восстание рабов: 23 афроамериканца убили девять белых и ранили ещё шестерых
- 6 апреля 1814 г. Наполеон отрёкся от престола, и Бурбоны вернулись на трон
- 6 апреля 1830 г., всего через 11 дней после появления в продаже Книги, в бревенчатом доме Питера Уитмера-старшего в Фейете, штат Нью-Йорк, собрались 60 человек; там Джозеф Смит официально организовал Церковь Иисуса Христа святых последних дней
- 6 апреля 1896 г. первым олимпийским чемпионом современности стал Джеймс Конноли, победивший в тройном прыжке с результатом 13,71 метра
- 6 апреля 1984 г. население Кокосовых островов проголосовало за полное присоединение к Австралии
- 6 апреля 2010 г. начались беспорядки в Таласе, которые быстро переросли в революцию в Киргизии

SIR-модели в эпидемиологии

- И напоследок конкретный (и весьма актуальный) пример
- Давайте попробуем применить то, о чём мы говорили, к эпидемиологии
- В модели SIR есть:
 - \cdot объекты (люди) $X = \{x_1, \dots, x_N\}$,
 - · каждый эволюционирует между тремя состояниями $\mathcal{S} = \{S, I, R\}^N;$
 - S, I, R ещё общее число объектов в соответствующих состояниях;
 - входные данные число зарегистрированных случаев заболевания, изменяющееся во времени: $\mathbf{y} = \left(y^{(t)}\right)_{t=1}^T$.

- Введём для каждого объекта траекторию (subject-path) $\mathbf{x}_j = \left(x_j^{(t)}\right)_{t=1}^T$, $j=1,\dots,N$.
- \cdot Тогда и статистики изменяются во времени: $S^{(t)}$, $I^{(t)}$, $R^{(t)}$.
- · Неизвестные параметры модели это $\theta = \{\beta, \mu, \rho, \pi\}$:
 - · π начальное распределение заболевших, $x_{j}^{(1)} \sim \pi$;
 - ρ вероятность обнаружить инфицированного в общей популяции, то есть вероятность того, что человек x_j в момент t, когда $x_j^{(t)} = I$, будет обнаружен тестированием и зачислен в данные $y^{(t)}$; тогда $y_t \mid I^{(t)}, \rho \sim \mathrm{Binom}(I^{(t)}, \rho)$;
 - $\cdot \mu$ вероятность для заболевшего выздороветь, то есть вероятность перехода из состояния I в состояние R;
 - β самый интересный параметр, вероятность заразиться за один отсчёт времени *от одного инфицированного человека*; будем предполагать самую простую модель, в которой вероятность заразиться от одного инфицированного равна β и все эти события независимы, а значит, вероятность остаться здоровым равна $(1-\beta)^{I^{(t)}}$.

- Обозначим вектор состояний всех людей, кроме x_j , через \mathbf{x}_{-j} (и остальные величины так же).
- · Вероятности перехода из $x_j^{(t-1)}$ в $x_j^{(t)}$:

$$\begin{array}{lll} p\left(x_{j}^{(t)}=S\Big|x_{j}^{(t-1)}=S,\mathbf{x}_{-j}^{(t-1)}\right) &=& (1-\beta)^{I_{-j}^{(t-1)}},\\ p\left(x_{j}^{(t)}=I\Big|x_{j}^{(t-1)}=S,\mathbf{x}_{-j}^{(t-1)}\right) &=& 1-(1-\beta)^{I_{-j}^{(t-1)}},\\ p\left(x_{j}^{(t)}=R\Big|x_{j}^{(t-1)}=I,\mathbf{x}_{-j}^{(t-1)}\right) &=& \mu,\\ p\left(x_{j}^{(t)}=I\Big|x_{j}^{(t-1)}=I,\mathbf{x}_{-j}^{(t-1)}\right) &=& 1-\mu,\\ p\left(x_{j}^{(t)}\Big|x_{j}^{(t-1)},\mathbf{x}_{-j}^{(t-1)}\right) &=& 0\quad \text{во всех остальных случаях}. \end{array}$$

• Скрытые переменные — те же самые траектории ${f x}$ (не зря же мы их вводили).

• Тогда полное правдоподобие $L(X,Y\mid\theta)$ получается как

$$\begin{split} L(X,Y\mid\theta) = & p(Y\mid X,\rho) p\left(X^{(1)}\middle|\pi\right) p\left(X\middle|X^{(1)},\beta,\mu\right) \\ = & \left[\prod_{t=1}^{T} {I^{(t)}\choose y^{(t)}} \rho^{y^{(t)}} (1-\rho)^{I^{(t)}-y^{(t)}}\right] \times \\ & \times \left[\pi_S^{S^{(1)}} \pi_I^{I^{(1)}} \pi_R^{R^{(1)}}\right] \cdot \left[\prod_{t=2}^{T} \prod_{j=1}^{N} p\left(x_j^t\middle|\mathbf{x}_{-j}^{t-1},\theta\right)\right], \end{split}$$

где $p\left(x_{j}^{t}|\mathbf{x}_{-j}^{t-1},\theta\right)$ определено матрицей вероятностей переходов.

• Апостериорное распределение, которое нам нужно:

$$p(\theta|Y) \propto p(\theta)p(Y|\theta) = \int L(Y \mid X, \theta)p(X|\theta)p(\theta)dX,$$

и этот интеграл, конечно, никак не подсчитать. Что же делать?

- На помощь приходит алгоритм Метрополиса-Гастингса, точнее, сэмплирование по Гиббсу.
- Будем сэмплировать траектории \mathbf{x}_j последовательно, зафиксировав все остальные \mathbf{x}_{-j} , данные \mathbf{y} и параметры модели θ :

$$\mathbf{x}_{j} \sim p\left(\mathbf{x}_{j} | \mathbf{x}_{-j}, \mathbf{y}, \theta\right).$$

- Для этого нужно сначала понять, как выглядит распределение на траектории \mathbf{x}_{j} .
- Очевидно, её элементы $x_j^{(t)}$ нельзя считать независимыми, ведь человек проходит цепочку состояний $S \to I \to R$ только один раз и слева направо (если проходит вовсе). Всё это на первый взгляд опять выглядит сложно...

- \cdot …но здесь получается модель, которая нам уже хорошо знакома: последовательность случайных переменных $x_j^{(t)}$ образует марковскую цепь, а если добавить ещё известные нам данные, то получится скрытая марковская модель.
- Выбросим \mathbf{x}_j из множества траекторий, получив статистики по всей остальной популяции $S_{-j}^{(t)}$, $I_{-j}^{(t)}$ и $R_{-j}^{(t)}$. Тогда параметры скрытой марковской модели таковы:
 - скрытые состояния $x_{j}^{(t)}$ с множеством возможных значений $\{S,I,R\};$
 - · матрица вероятностей перехода $p\left(x_j^t|\mathbf{x}_{-j}^{t-1},\theta\right)$, определённая выше;
 - · наблюдаемые \mathbf{y} , вероятности получить которые зависят от того, заражён ли человек x_i в момент времени t:

$$p\left(y^{(t)}\middle|x_{j}^{(t)}\right) = \operatorname{Binom}\left(I_{-j}^{(t)} + \left[x_{j}^{(t)} = I\right], \rho\right).$$

- Чтобы сэмплировать одну траекторию \mathbf{x}_j при условии фиксированных остальных траекторий \mathbf{x}_{-j} , нужно сэмплировать траекторию вдоль скрытых состояний марковской модели.
- · Здесь \mathbf{x}_j будет эволюционировать от состояния S к состоянию R последовательно, с вероятностями перехода \mathbf{x}_j на каждом шаге от S к R

$$p\left(x_{j}^{(t)} = I \middle| x_{j}^{(t-1)} = S, \mathbf{x}_{-j}\right) = 1 - (1 - \beta)^{I_{-j}^{(t-1)}},$$

а вероятность перехода от I к R фиксирована и равна μ .

- Стохастический алгоритм Витерби: два прохода по НММ слева направо и справа налево.
- На прямом проходе подсчитываем матрицы совместных вероятностей пар последовательных состояний

$$Q_{j}^{(t)} = \left(q_{j,s',s}^{t}\right)_{s',s \in \{S,I,R\}},$$
 где

$$q_{j,s',s}^t = p\left(x_j^{(t)} = s, x_j^{(t-1)} = s' \middle| Y, \mathbf{x}_{-j}, \theta\right).$$

• Фактически в нашей модели возможных пар таких состояний всего шесть (остальные переходы запрещены), и все матрицы Q выглядят как

$$Q_j^{(t)} = \begin{pmatrix} q_{j,S,S}^{(t)} & q_{j,S,I}^{(t)} & 0 \\ 0 & q_{j,I,I}^{(t)} & q_{j,I,R}^{(t)} \\ 0 & 0 & q_{j,R,R}^{(t)} \end{pmatrix}.$$

 \cdot Чтобы вычислить $q_{j,s',s}^{(t)}$, нужно подсчитать

$$\begin{split} q_{j,s',s}^{(t)} &= p\left(x_j^{(t)} = s, x_j^{(t-1)} = s' \middle| \mathbf{y}, \mathbf{x}_{-j}, \theta \right) \propto \\ &\propto p\left(x_j^{(t-1)} = s' \middle| \mathbf{y}, \mathbf{x}_{-j}, \theta \right) p\left(x_j^{(t)} = s \middle| x_j^{(t-1)} = s', \mathbf{y}, \mathbf{x}_{-j}, \theta \right) \times \\ &\times p\left(y_t \middle| x_j^{(t)} = s, \mathbf{y}, \mathbf{x}_{-j}, \theta \right) = \\ &= \left[\sum_{s''} q_{j,s'',s'}^{(t-1)} \right] \cdot p\left(x_j^{(t)} = s \middle| x_j^{(t-1)} = s', \mathbf{x}_{-j}, \theta \right) \times \\ &\times p_{\mathrm{Binom}}\left(y^{(t)} \mid I_{-j}^{(t)} + \left[x_j^{(t)} = I\right], \rho \right), \end{split}$$

где $p\left(x_{j}^{(t)}=s\middle|x_{j}^{(t-1)}=s',\mathbf{x}_{-j},\theta\right)$ — это те самые вероятности перехода в нашей модели, подсчитанные по статистикам $S_{-j}^{(t-1)}$, $I_{-j}^{(t-1)}$ и $R_{-j}^{(t-1)}$, а p_{Binom} — вероятность по биномиальному распределению.

• Потом нужно нормировать, учитывая, что $\sum_{s,s'} q_{j,s',s}^{(t)} = 1.$

• Когда все матрицы $Q_j^{(t)}$ подсчитаны, их можно использовать для того, чтобы сэмплировать целые последовательности скрытых состояний. Для этого нужно разложить $p(\mathbf{x}_j \mid \mathbf{x}_{-j}, \mathbf{y}, \theta)$ не с начала времён, а с конца:

$$\begin{split} p\left(\mathbf{x}_{j} \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) &= p\left(x_{j}^{(T)} \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) p\left(x_{j}^{(T-1)} \middle| x_{j}^{(T)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right) \times \dots \\ & \dots \times p\left(x_{j}^{(2)} \middle| x_{j}^{(3)}, \dots, x_{j}^{(T)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right) \times \\ & \times p\left(x_{j}^{(1)} \middle| x_{j}^{(2)}, \dots x_{j}^{(T)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right). \end{split}$$

 \cdot И можно сэмплировать справа налево по матрицам Q.

· Последнее состояние сэмплируется из сумм по строкам последней матрицы $Q_j^{(T)}$:

$$\begin{split} x_j^{(T)} &\sim p\left(x_j^{(T)} = s \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) = \\ &= \sum_{s'} p\left(x_j^{(T)} = s, x_j^{(T-1)} = s' \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) = \\ &= \sum_{s'} q_{j,s',s}^{(T)}. \end{split}$$

- А дальше достаточно, по марковскому свойству последовательности \mathbf{x}_j , сэмплировать при условии следующего состояния, то есть использовать распределение

$$\begin{split} x_j^{(t)} \sim p\left(x_j^{(t)} = s \middle| x_j^{(t+1)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right) \propto \\ \propto p\left(x_j^{(t)} = s, x_j^{(t+1)} = s' \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) = q_{j, s, s'}^{(t+1)}. \end{split}$$

- Так мы получим новую траекторию \mathbf{x}_j , и её можно подставить в X на место старой траектории и продолжать процесс сэмплирования: выбрать новый индекс j и повторить всё заново.
- В какой-то момент надо будет остановиться и обновить значения параметров.
- Теоретически можно даже сделать полноценный байесовский вывод, пересчитав параметры сопряжённых априорных распределений.
- Три основных параметра β , ρ и μ это три монетки, а оставшийся параметр π кубик с тремя гранями. Поэтому сопряжёнными априорными распределениями будут

$$\begin{array}{lclcl} p(\beta) & = & \mathrm{Beta}\left(a_{\beta}, b_{\beta}\right), & p(\mu) & = & \mathrm{Beta}\left(a_{\mu}, b_{\mu}\right), \\ p(\rho) & = & \mathrm{Beta}\left(a_{\rho}, b_{\rho}\right), & p(\pi) & = & \mathrm{Dir}\left(\mathbf{a}_{\pi}\right). \end{array}$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - \cdot к параметрам \mathbf{a}_{π} добавляются статистики того, в каких состояниях начинаются траектории:

$$a_{\pi,s} := a_{\pi,s} + \sum_{j=1}^{N} \left[x_j^{(1)} = s \right];$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - параметры a_{μ} и b_{μ} обновляются в зависимости от того, каково было ожидаемое число переходов из состояния I в состояние R (выздоровлений) и сколько всего времени люди провели в состоянии I (проболели):

$$\begin{split} a_{\mu} := & a_{\mu} + \sum_{t=1}^{T-1} \sum_{j=1}^{N} \left[x_{j}^{(t)} = I, x_{j}^{(t+1)} = R \right], \\ b_{\mu} := & b_{\mu} + \sum_{t=1}^{T} I^{(t)} - \sum_{t=1}^{T-1} \sum_{j=1}^{N} \left[x_{j}^{(t)} = I, x_{j}^{(t+1)} = R \right]. \end{split}$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - аналогично, параметры a_{ρ} и b_{ρ} получаются из статистики выявленных случаев, попавших в ${f y}$, по сравнению со случаями, которые оказались только в $I^{(t)}$:

$$a_{\rho} := a_{\rho} + \sum_{t=1}^{T} y^{(t)}, \quad b_{\rho} := b_{\rho} + \sum_{t=1}^{T} \left(I^{(t)} - y^{(t)} \right);$$

• Параметры a_{β} и b_{β} самые интересные: нужно подсчитать ожидаемое число «возможностей заразиться», которые реализовались и не реализовались для всех людей в популяции:

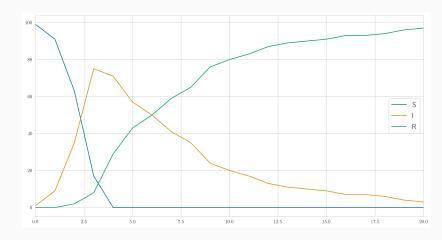
$$p\left(x_{j}$$
 заразился при одном контакте $\left|x_{j}\right.$ заразился $\right)=\dfrac{eta}{1-\left(1-eta
ight)^{I^{(t)}}},$

а значит,

$$\begin{split} a_{\beta} := & a_{\beta} + \sum_{t,j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = I} \frac{\beta I^{(t)}}{1 - \left(1 - \beta\right)^{I^{(t)}}}, \\ b_{\beta} := & b_{\beta} + \sum_{t,j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = S} I^{(t)} + \sum_{t,j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = I} \left(I^{(t)} - \frac{\beta I^{(t)}}{1 - \left(1 - \beta\right)^{I^{(t)}}}\right) \end{split}$$

- Итого получили все компоненты нашей (сильно упрощённой!) SIR-модели: скрытые переменные в виде траекторий элементов популяции, алгоритм для сэмплирования по Гиббсу, который сэмплирует одну траекторию при условии всех остальных, и правила обновления параметров, которыми можно воспользоваться после того, как марковская цепь сэмплирования достаточно долго поработала.
- Давайте теперь посмотрим на практику...

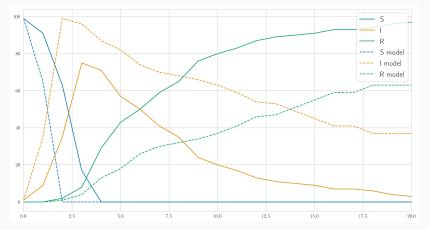
• Пример визуализации статистик заражения при параметрах N=100, T=20, $\rho=0.1$, $\beta=0.05$, $\mu=0.1$:



• Пример обучения параметров модели SIR:



• И если посэмплировать популяции из полученных параметров и из настоящих, получится совсем одно и то же:



• Какие выводы? Как это использовать на практике?

Вариационные приближения

Вариационный вывод

- Вариационный вывод: функционалы, производные по функциям... в общем, можно оптимизировать функционалы.
- Для нас это значит, что можно оптимизировать приближение q из какого-то класса к заданному p.
- · Пусть есть $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ и $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}.$
- Мы знаем $p(\mathbf{X},\mathbf{Z})$ из модели, хотим найти приближение для $p(\mathbf{Z}\mid\mathbf{X})$ и $p(\mathbf{X}).$

Вариационный вывод

· Как и в ЕМ:

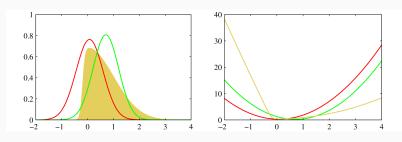
$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \mathrm{KL}(q\|p)$$
, где
$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \mathrm{d}\mathbf{Z},$$

$$\mathrm{KL}(q\|p) = -\int q(\mathbf{Z}) \ln \frac{p(\mathbf{Z} \mid \mathbf{X})}{q(\mathbf{Z})} \mathrm{d}\mathbf{Z}.$$

 $\cdot \ \mathcal{L}(q)$ — это вариационная нижняя оценка, её можно теперь максимизировать, и KL будет автоматически минимизироваться.

Вариационный вывод

• Пример – сравним с лапласовским:



- Если q(Z) произвольное, то мы просто получим $q(Z) = p(\mathbf{Z} \mid \mathbf{X})$; но это вряд ли получится.
- Будем ограничивать.

Факторизуемые распределения

 \cdot Главный частный случай — пусть $\mathbf{Z} = \mathbf{Z}_1 \sqcup ... \sqcup \mathbf{Z}_M$, и

$$q(\mathbf{Z}) = \prod_{i=1}^M q_i(\mathbf{Z}_i).$$

- Но больше никаких предположений! В этом прелесть оптимизируем сразу функции!
- Это соответствует теории среднего поля в физике (mean field theory).

Факторизуемые распределения

• Тогда:

$$\begin{split} \mathcal{L}(q) &= \int \prod_i q_i \left(\ln p(\mathbf{X}, \mathbf{Z}) - \sum_i \ln q_i \right) \mathrm{d}\mathbf{Z} \\ &= \int q_j \left[\int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i \mathrm{d}\mathbf{Z}_i \right] \mathrm{d}\mathbf{Z}_j - \int q_j \ln q_j \mathrm{d}\mathbf{Z}_j + \mathrm{const} \\ &= \int q_j \ln \tilde{p}(\mathbf{X}, \mathbf{Z}_j) \mathrm{d}\mathbf{Z}_j - \int q_j \ln q_j \mathrm{d}\mathbf{Z}_j + \mathrm{const}, \end{split}$$

где
$$\ln \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathrm{E}_{i \neq j} \left[\ln p(\mathbf{X}, \mathbf{Z}) \right] + \mathrm{const.}$$

· Как максимизировать теперь $\mathcal{L}(q)$ по q_{j} ?

Факторизуемые распределения

- Надо заметить, что мы получили там КL-дивергенцию между $q_j(\mathbf{Z}_j)$ и $\tilde{p}(\mathbf{X},\mathbf{Z}_j).$
- Т.е. оптимальное решение получится при

$$\ln q_j^*(\mathbf{Z}_j) = \mathrm{E}\left[\ln p(\mathbf{X}, \mathbf{Z})\right] + \mathrm{const.}$$

- Константа здесь просто для нормализации.
- Оказывается, достаточно взять ожидание от логарифма совместного распределения.
- Но явных формул не получается, потому что ожидание считается по остальным q_i^* , $i \neq j$.
- И всё-таки обычно что-то можно сделать; давайте рассмотрим примеры.

Спасибо за внимание!

