ТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Сергей Николенко СПбГУ— Санкт-Петербург 11 апреля 2024 г.

Random facts:

- 11 апреля Международный день освобождения узников нацистских концлагерей; 11 апреля 1945 г. был освобождён Бухенвальд, где узники успешно подняли восстание
- 11 апреля 1868 г. Токугава Ёсинобу сдал замок Эдо имперским войскам, чем завершил славную историю сёгуната Токугава
- 11 апреля 1894 г. Великобритания объявила протекторат над Угандой, а 11 апреля 1957 г. согласилась на самоуправление Сингапура; с другой стороны, 11 апреля 1899 г. Испания передала США Пуэрто-Рико
- 11 апреля 1917 г. В.И. Ленин сформулировал «Апрельские тезисы», в которых призвал бороться за республику Советов
- 11 апреля 1961 г. Боб Дилан дебютировал в Нью-Йорке, а 11 апреля 1982 г. в «Комсомольской правде» вышла статья «Рагу из синей птицы», направленная против группы «Машина времени»; впрочем, в редакцию пришло несколько мешков писем в поддержку группы, и серьёзных последствий публикация не имела
- 11 апреля 1967 г. в лондонском Национальном театре прошла премьера первой пьесы Тома Стоппарда «Розенкранц и Гильденстерн мертвы»

Наивный байесовский

Категоризация текстов

- Классическая задача машинного обучения и information retrieval категоризация текстов.
- Дан набор текстов, разделённый на категории. Нужно обучить модель и потом уметь категоризовать новые тексты.
- Атрибуты a_1, a_2, \dots, a_n это слова, v тема текста (или атрибут вроде «спам / не спам»).
- Bag-of-words model: забываем про порядок слов, составляем словарь. Теперь документ – это вектор, показывающий, сколько раз каждое слово из словаря в нём встречается.

NAIVE BAYES

- Заметим, что даже это сильно упрощённый взгляд: для слов ещё довольно-таки важен порядок, в котором они идут...
- Но и это ещё не всё: получается, что $p(a_1,a_2,\dots,a_n|x=v)$ это вероятность в точности такого набора слов в сообщениях на разные темы. Очевидно, такой статистики взять неоткуда.
- Значит, надо дальше делать упрощающие предположения.
- Наивный байесовский классификатор самая простая такая модель: давайте предположим, что все слова в словаре условно независимы при условии данной категории.

NAIVE BAYES

• Иначе говоря:

$$p(a_1, a_2, \dots, a_n | x = v) = p(a_1 | x = v) p(a_2 | x = v) \dots p(a_n | x = v).$$

 \cdot Итак, наивный байесовский классификатор выбирает v как

$$v_{NB}(a_1,a_2,\dots,a_n) = \mathop{\arg\max}_{v \in V} p(x=v) \prod_{i=1}^n p(a_i|x=v).$$

• В парадигме классификации текстов мы предполагаем, что разные слова в тексте на одну и ту же тему появляются независимо друг от друга. Однако, несмотря на такие бредовые предположения, naive Bayes на практике работает очень даже неплохо (и этому есть разумные объяснения).

4

- Но в деталях реализации наивного байесовского классификатора есть тонкости.
- Сейчас мы рассмотрим два разных подхода к naive Bayes, которые дают разные результаты: мультиномиальный (multinomial) и многомерный (multivariate).

- В многомерной модели документ это вектор бинарных атрибутов, показывающих, встретилось ли в документе то или иное слово.
- Когда мы подсчитываем правдоподобие документа, мы перемножаем вероятности того, что встретилось каждое слово из документа и вероятности того, что не встретилось каждое (словарное) слово, которое не встретилось.
- Получается модель многомерных испытаний Бернулли. Наивное предположение в том, что события «встретилось ли слово» предполагаются независимыми.

- Математически: пусть $V=\{w_t\}_{t=1}^{|V|}$ словарь. Тогда документ d_i это вектор длины |V|, состоящий из битов B_{it} ; $B_{it}=1$ iff слово w_t встречается в документе d_i .
- Правдоподобие принадлежности d_i классу c_j :

$$p(d_i \mid c_j) = \prod_{t=1}^{|V|} \left(B_{it} p(w_t \mid c_j) + (1 - B_{it}) (1 - p(w_t \mid c_j)) \right).$$

• Для обучения такого классификатора нужно обучить вероятности $p(w_t \mid c_i).$

- Обучение дело нехитрое: пусть дан набор документов $D=\{d_i\}_{i=1}^{|D|}$, которые уже распределены по классам c_j (возможно, даже вероятностно распределены), дан словарь $V=\{w_t\}_{t=1}^{|V|}$, и мы знаем биты B_{it} (знаем документы).
- Тогда можно подсчитать оптимальные оценки вероятностей того, что то или иное слово встречается в том или ином классе (при помощи лапласовой оценки):

$$p(w_t \mid c_j) = \frac{1 + \sum_{i=1}^{|D|} B_{it} p(c_j \mid d_i)}{2 + \sum_{i=1}^{|D|} p(c_j \mid d_i)}.$$

- Априорные вероятности классов можно подсчитать как $p(c_i) = \frac{1}{|D|} \sum_{i=1}^{|D|} p(c_i \mid d_i).$
- Тогда классификация будет происходить как

$$\begin{split} c &= \arg\max_{j} p(c_{j}) p(d_{i} \mid c_{j}) = \\ &= \arg\max_{j} \left(\frac{1}{|D|} \sum_{i=1}^{|D|} p(c_{j} \mid d_{i}) \right) \prod_{t=1}^{|V|} \left(B_{it} p(w_{t} \mid c_{j}) + (1 - B_{it}) (1 - p(w_{t} \mid c_{j})) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log\left(B_{it} p(w_{t} \mid c_{j}) + (1 - B_{it}) (1 - p(w_{t} \mid c_{j})) \right) \right). \end{split}$$

- В мультиномиальной модели документ это последовательность событий. Каждое событие – это случайный выбор одного слова из того самого «bag of words».
- Когда мы подсчитываем правдоподобие документа, мы перемножаем вероятности того, что мы достали из мешка те самые слова, которые встретились в документе. Наивное предположение в том, что мы достаём из мешка разные слова независимо друг от друга.
- Получается мультиномиальная генеративная модель, которая учитывает количество повторений каждого слова, но не учитывает, каких слов *нет* в документе.

- Математически: пусть $V=\{w_t\}_{t=1}^{|V|}$ словарь. Тогда документ d_i это вектор длины $|d_i|$, состоящий из слов, каждое из которых «вынуто» из словаря с вероятностью $p(w_t \mid c_i)$.
- Правдоподобие принадлежности d_i классу c_i :

$$p(d_i \mid c_j) = p(|d_i|)|d_i|! \prod_{t=1}^{|V|} \frac{1}{N_{it}!} p(w_t \mid c_j)^{N_{it}},$$

где N_{it} – количество вхождений w_t в d_i .

· Для обучения такого классификатора тоже нужно обучить вероятности $p(w_t \mid c_j).$

- Обучение: пусть дан набор документов $D = \{d_i\}_{i=1}^{|D|}$, которые уже распределены по классам c_j (возможно, даже вероятностно распределены), дан словарь $V = \{w_t\}_{t=1}^{|V|}$, и мы знаем вхождения N_{it} .
- Тогда можно подсчитать апостериорные оценки вероятностей того, что то или иное слово встречается в том или ином классе (не забываем сглаживание – правило Лапласа):

$$p(w_t \mid c_j) = \frac{1 + \sum_{i=1}^{|D|} N_{it} p(c_j \mid d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} p(c_j \mid d_i)}.$$

- Априорные вероятности классов можно подсчитать как $p(c_i) = \frac{1}{|D|} \sum_{i=1}^{|D|} p(c_i \mid d_i).$
- Тогда классификация будет происходить как

$$\begin{split} c &= \arg\max_{j} p(c_{j}) p(d_{i} \mid c_{j}) = \\ &= \arg\max_{j} \left(\frac{1}{|D|} \sum_{i=1}^{|D|} p(c_{j} \mid d_{i}) \right) p(|d_{i}|) |d_{i}|! \prod_{t=1}^{|V|} \frac{1}{N_{it}!} p(w_{t} \mid c_{j})^{N_{it}} = \\ &= \arg\max_{j} \left(\log \left(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i}) \right) + \sum_{t=1}^{|V|} N_{it} \log p(w_{t} \mid c_{j}) \right). \end{split}$$

Как можно обобщить наивный байес

- В наивном байесе есть два сильно упрощающих дело предположения:
 - мы знаем метки тем всех документов;
 - у каждого документа только одна тема.
- Мы сейчас уберём оба эти ограничения.
- Во-первых, что можно сделать, если мы не знаем метки тем, т.е. если датасет неразмеченный?

Кластеризация

- Тогда это превращается в задачу кластеризации.
- Её можно решать EM-алгоритмом (Expectation-Maximization, используется в ситуациях, когда есть много скрытых переменных, причём если бы мы их знали, модель стала бы простой):
 - на E-шаге считаем ожидания того, какой документ какой теме принадлежит;
 - \cdot на М-шаге пересчитываем наивным байесом вероятности $p(w \mid t)$ при фиксированных метках.
- Это простое обобщение.

Как ещё можно обобщить наивный байес

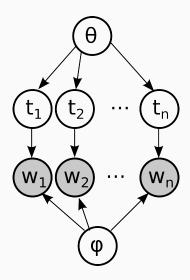
- В прошлый раз мы много говорили о наивном байесе и начали его обобщать.
- Пока обобщили на обучение без учителя (кластеризацию).
- А ещё в наивном байесе у документа только одна тема.
- Но это же не так! На самом деле документ говорит о многих темах (но не слишком многих).
- Давайте попробуем это учесть.

- Рассмотрим такую модель:
 - · каждое слово в документе d порождается некоторой темой $t \in T$;
 - · документ порождается некоторым распределением на темах $p(t\mid d)$;
 - · слово порождается именно темой, а не документом: $p(w\mid d,t) = p(w\mid d);$
 - итого получается такая функция правдоподобия:

$$p(w \mid d) = \sum_{t \in T} p(w \mid t) p(t \mid d).$$

• Эта модель называется probabilistic latent semantic analysis, pLSA (Hoffmann, 1999).

PLSA: ГРАФИЧЕСКАЯ МОДЕЛЬ ДОКУМЕНТА



ПРИМЕР

• Получается как-то так:

```
Алгоритм 2. Рациональный ЕМ-алгоритм для тематической модели (2).
```

· Как её обучать? Мы можем оценить $p(w \mid d) = \frac{n_{wd}}{n_d}$, а нужно найти:

·
$$\phi_{wt} = p(w \mid t);$$

· $\theta_{td} = p(t \mid d).$

• Максимизируем правдоподобие

$$p(D) = \prod_{d \in D} \prod_{w \in d} p(d,w)^{n_{dw}} = \prod_{d \in D} \prod_{w \in d} \left[\sum_{t \in T} p(w \mid t) p(t \mid d) \right]^{n_{dw}}.$$

• Как максимизировать такие правдоподобия?

• ЕМ-алгоритмом. На Е-шаге ищем, сколько слов w в документе d из темы t:

$$n_{dwt} = n_{dw} p(t \mid d, w) = n_{dw} \frac{\phi_{wt} \theta_{td}}{\sum_{s \in T} \phi_{ws} \theta_{sd}}.$$

• А на М-шаге пересчитываем параметры модели:

$$\begin{split} n_{wt} &= \sum_{d} n_{dwt}, & n_t = \sum_{w} n_{wt}, & \phi_{wt} = \frac{n_{wt}}{n_t}, \\ n_{td} &= \sum_{w \in d} n_{dwt}, & \theta_{td} = \frac{n_{td}}{n_d}. \end{split}$$

• Вот и весь вывод в pLSA.

• Можно даже не хранить всю матрицу n_{dwt} , а двигаться по документам, каждый раз добавляя n_{dwt} сразу к счётчикам $n_{wt}, n_{td}.$

Алгоритм 2. Рациональный ЕМ-алгоритм для тематической модели (2).

```
Вход: коллекция D, число тем |T|, начальные приближения матриц \Phi и \Theta; Выход: параметры модели \Phi и \Theta;

1 повторять

2 | обнулить n_{wt}, n_{td}, n_t для всех d \in D, w \in W, t \in T;

3 | для всех d \in D, w \in d

4 | n_{tdw} := n_{dw} \varphi_{wt} \theta_{td} / \sum_{\tau} \varphi_{w\tau} \theta_{\tau d} для всех t \in T;

5 | увеличить n_{wt}, n_{td}, n_t на n_{tdw} для всех t \in T;

6 | \varphi_{wt} := n_{wt} / n_t для всех w \in W, t \in T;

7 | \theta_{td} := n_{td} / n_d для всех d \in D, t \in T;

8 пока \Phi и \Theta не сойдутся;
```

- Чего тут не хватает?
 - Во-первых, разложение такое, конечно, будет сильно не единственным.
 - Во-вторых, параметров очень много, явно будет оверфиттинг, если корпус не на порядки больше числа тем.
 - А совсем хорошо было бы получать не просто устойчивое решение, а обладающее какими-нибудь заданными хорошими свойствами.
- Всё это мы можем решить как?

- Правильно, регуляризацией. Есть целая наука о разных регуляризаторах для pLSA (К.В. Воронцов).
- В общем виде так: добавим регуляризаторы R_i в логарифм правдоподобия:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + \sum_{i} \tau_{i} R_{i}(\Phi, \Theta).$$

• Тогда в ЕМ-алгоритме на М-шаге появятся частные производные $\it R$:

$$\begin{split} n_{wt} &= \left[\sum_{d \in D} n_{dwt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right]_+, \\ n_{td} &= \left[\sum_{w \in d} n_{dwt} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right]_+ \end{split}$$

• Чтобы доказать, EM надо рассмотреть как решение задачи оптимизации через условия Каруша-Куна-Такера.

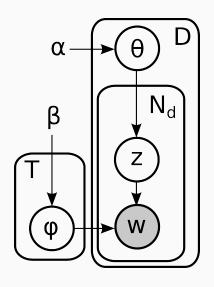
- И теперь мы можем кучу разных регуляризаторов вставить в эту модель:
 - регуляризатор сглаживания (позже, это примерно как LDA);
 - регуляризатор разреживания: максимизируем КL-расстояние между распределениями ϕ_{wt} и θ_{td} и равномерным распределением;
 - регуляризатор контрастирования: минимизируем ковариации между векторами ϕ_t , чтобы в каждой теме выделилось своё лексическое ядро (характерные слова);
 - регуляризатор когерентности: будем награждать за слова, которые в документах стоят ближе друг к другу;
 - и так далее, много всего можно придумать.

- Развитие идей pLSA LDA (Latent Dirichlet Allocation).
- Это фактически байесовский вариант pLSA, сейчас нарисуем картинки, добавим априорные распределения и посмотрим, как сработают наши методы приближённого вывода.
- Задача та же: смоделировать большую коллекцию текстов (например, для information retrieval или классификации).

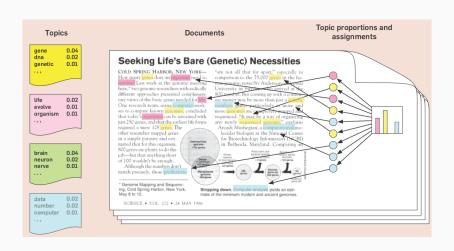
- У одного документа может быть несколько тем. Давайте построим иерархическую байесовскую модель:
 - на первом уровне смесь, компоненты которой соответствуют «темам»;
 - на втором уровне мультиномиальная переменная с априорным распределением Дирихле, которое задаёт «распределение тем» в документе.

- Если формально: слова берутся из словаря $\{1,\dots,V\}$; слово это вектор $w,\,w_i\in\{0,1\}$, где ровно одна компонента равна 1.
- Документ последовательность из N слов ${\bf w}$. Нам дан корпус из M документов $D=\{{\bf w}_d\mid d=1..M\}.$
- Генеративная модель LDA выглядит так:
 - выбрать $\theta \sim \mathrm{Di}(\alpha)$;
 - для каждого из N слов w_n :
 - выбрать тему $z_n \sim \mathrm{Mult}(\theta)$;
 - · выбрать слово $w_n \sim p(w_n \mid z_n, \beta)$ по мультиномиальному распределению.

LDA: графическая модель



LDA: что получается [Blei, 2012]



LDA: вывод

- Два основных подхода к выводу в сложных вероятностных моделях, в том числе LDA:
 - вариационные приближения: рассмотрим более простое семейство распределений с новыми параметрами и найдём в нём наилучшее приближение к неизвестному распределению;
 - сэмплирование: будем набрасывать точки из сложного распределения, не считая его явно, а запуская марковскую цепь под графиком распределения (частный случай сэмплирование по Гиббсу).
- Сэмплирование по Гиббсу обычно проще расширить на новые модификации LDA, но вариационный подход быстрее и часто стабильнее.

Вывод в LDA

• Рассмотрим задачу байесовского вывода, т.е. оценки апостериорного распределения θ и z после нового документа:

$$p(\theta, \mathbf{z} \mid \mathbf{w}, \alpha, \beta) = \frac{p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta)}{p(\mathbf{w} \mid \alpha, \beta)}.$$

 \cdot Правдоподобие набора слов ${f w}$ оценивается как

$$p(\mathbf{w} \mid \alpha, \beta) = \frac{\Gamma(\sum_i \alpha_i)}{\prod_i \Gamma(\alpha_i)} \int \left[\prod_{i=1}^k \theta_i^{\alpha_i - 1} \right] \left[\prod_{n=1}^N \sum_{i=1}^k \prod_{j=1}^V (\theta_i \beta_{ij})^{w_n^j} \right] d\theta,$$

и это трудно посчитать, потому что θ и β путаются друг с другом.

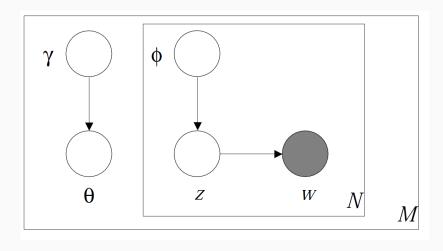
Вывод в LDA

 Вариационное приближение – рассмотрим семейство распределений

$$q(\boldsymbol{\theta}, \boldsymbol{z} \mid \mathbf{w}, \boldsymbol{\gamma}, \boldsymbol{\phi}) = p(\boldsymbol{\theta} \mid \mathbf{w}, \boldsymbol{\gamma}) \prod_{n=1}^{N} p(z_n \mid \mathbf{w}, \boldsymbol{\phi}_n).$$

- Тут всё расщепляется, и мы добавили вариационные параметры γ (Дирихле) и ϕ (мультиномиальный).
- Заметим, что параметры для каждого документа могут быть свои всё условно по ${\bf w}$.

LDA: вариационное приближение



· Теперь можно искать минимум KL-расстояния:

$$(\gamma^*, \phi^*) = \arg\min_{(\gamma, \phi)} \mathrm{KL}(q(\theta, z \mid \mathbf{w}, \gamma \phi) \| p(\theta, \mathbf{z} \mid \mathbf{w}, \alpha, \beta)).$$

• Для этого сначала воспользуемся уже известной оценкой из неравенства Йенсена:

$$\begin{split} \log p(\mathbf{w} \mid \alpha, \beta) &= \log \int_{\theta} \sum_{\mathbf{z}} p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta) d\theta = \\ &= \log \int_{\theta} \sum_{\mathbf{z}} \frac{p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta) q(\theta, \mathbf{z})}{q(\theta, \mathbf{z})} d\theta \geq \\ &\geq E_q \left[\log p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta) \right] - E_q \left[\log q(\theta, \mathbf{z}) \right] =: L(\gamma, \phi; \alpha, \beta). \end{split}$$

• Распишем произведения:

$$\begin{split} L(\gamma, \phi; \alpha, \beta) &= E_q \left[p(\theta \mid \alpha) \right] + E_q \left[p(\mathbf{z} \mid \theta) \right] + E_q \left[p(\mathbf{w} \mid \mathbf{z}, \beta) \right] - \\ &- E_q \left[\log q(\theta) \right] - E_q \left[\log q(\mathbf{z}) \right]. \end{split}$$

· Свойство распределения Дирихле: если $X \sim \mathrm{Di}(lpha)$, то

$$E[\log(X_i)] = \Psi(\alpha_i) - \Psi(\sum_i \alpha_i),$$

где
$$\Psi(x) = rac{\Gamma'(x)}{\Gamma(x)}$$
 – дигамма-функция.

• Теперь можно выписать каждый из пяти членов.

$$\begin{split} L(\gamma,\phi;\alpha,\beta) &= \log \Gamma(\sum_{i=1}^k \alpha_i) - \sum_{i=1}^k \log \Gamma(\alpha_i) + \sum_{i=1}^k (\alpha_i - 1) \left[\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right) \right] + \\ &+ \sum_{n=1}^N \sum_{i=1}^k \phi_{ni} \left[\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right) \right] + \\ &+ \sum_{n=1}^N \sum_{i=1}^k \sum_{j=1}^V w_n^j \phi_{ni} \log \beta_{ij} - \\ &- \log \Gamma(\sum_{i=1}^k \gamma_i) + \sum_{i=1}^k \log \Gamma(\gamma_i) - \sum_{i=1}^k (\gamma_i - 1) \left[\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right) \right] - \\ &- \sum_{n=1}^N \sum_{i=1}^k \phi_{ni} \log \phi_{ni}. \end{split}$$

- Теперь осталось только брать частные производные этого выражения.
- Сначала максимизируем его по ϕ_{ni} (вероятность того, что n-е слово было порождено темой i); надо добавить λ -множители Лагранжа, т.к. $\sum_{i=1}^k \phi_{nj} = 1$.
- В итоге получится:

$$\phi_{ni} \propto \beta_{iv} e^{\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right)},$$

где v – номер того самого слова, т.е. единственная компонента $w_n^v=1.$

- Потом максимизируем по $\gamma_i,\,i$ -й компоненте апостериорного Дирихле-параметра.
- Получится

$$\gamma_i = \alpha_i + \sum_{n=1}^N \phi_{ni}.$$

· Соответственно, для вывода нужно просто пересчитывать ϕ_{ni} и γ_i друг через друга, пока оценка не сойдётся.

LDA: ОЦЕНКА ПАРАМЕТРОВ

- Теперь давайте попробуем оценить параметры α и β по корпусу документов D.
- \cdot Мы хотим найти lpha и eta, которые максимизируют

$$\ell(\alpha, \beta) = \sum_{d=1}^{M} \log p(\mathbf{w}_d \mid \alpha, \beta).$$

• Подсчитать $p(\mathbf{w}_d \mid \alpha, \beta)$ мы не можем, но у нас есть нижняя оценка $L(\gamma, \phi; \alpha, \beta)$, т.к.

$$\begin{split} p(\mathbf{w}_d \mid \alpha, \beta) &= \\ &= L(\gamma, \phi; \alpha, \beta) + \text{KL}(q(\theta, z \mid \mathbf{w}_d, \gamma \phi) \| p(\theta, \mathbf{z} \mid \mathbf{w}_d, \alpha, \beta)). \end{split}$$

LDA: ОЦЕНКА ПАРАМЕТРОВ

- ЕМ-алгоритм:
 - 1. найти параметры $\{\gamma_d,\phi_d\mid d\in D\}$, которые оптимизируют оценку (как выше);
 - 2. зафиксировать их и оптимизировать оценку по α и β .

LDA: оценка параметров

• Для β это тоже делается нехитро:

$$\beta_{ij} \propto \sum_{d=1}^{M} \sum_{n=1}^{N_d} \phi_{dni} w_n^j. \label{eq:beta_ij}$$

• Для α_i получается система уравнений, которую можно решить методом Ньютона.

Спасибо за внимание!

