

Skoltech

Skolkovo Institute of Science and Technolog

Post-training LLMs: Smarter Algorithms & Rewards

Plan

- Intro
 - LLM, pre-train, SFT
 - RL and RLHF
 - Reward modelling
- RLHF
 - Rejection sampling
 - PPO (KL, GAE)
 - DPO
 - RLOO, CGPO
 - Verifiable rewards
 - GRPO

Intro

Intro: LLMs

Intro: stages of LLM training

Intro: pretraining

- Gather A LOT of text from the internet
- Train an LLM to predict the next word
- 🕂 Cheap data
- **Expensive large-scale training**
- Don't adhere to instructions well
- Have to "trick" or fine-tune the model for specific tasks

What is the capital of France?

What is France's largest city?

What is France's population?

What is the currency of France?

Intro: Supervised Fine-Tuning (SFT)

- Collect examples written by humans
- Teach the LLM the output format and basic skills

 $\nabla_{\theta} \log \pi (y_w \mid x)$ increase likelihood of y_w

- 🕂 High-quality data
- **Expensive** to collect data
- Expensive to change data
- Can't directly penalize unwanted behavior
- LLM's outputs won't be better than its training data

What is the capital of France?
The capital of France is Paris.

Questions?

Intro: Reinforcement Learning (RL)

- Environment, actions, reward
- **+** Chains of stochastic actions
- **+** Non-differentiable reward
- Training is unstable

Reinforcement learning

10/64

RLHF for LLMs

- Actions = tokens or the whole LLM answer
- Reward = how good the answer is

- **+** Align the Al with human values
- **-** Judging is easier than demonstrating
- • Online learning and exploration (e.g. CoT)
- Still not scalable enough

RLHF: reward modelling

- Collect **pairwise** data from humans
- Train a reward model as approximation
- + Scalable, fast inference
- **+** Captures more nuance
- Removes calibration problem
- Reward's absolute value is meaningless
- Optimizing imperfect rewards leads to overfitting / goodharting

RLHF: reward modelling

- Reward model training: loss from Bradley-Terry model

$$\mathcal{L}(\psi) = \log \sigma(r(x, y_w) - r(x, y_l))$$

RLAIF: reward modelling

- Collect data from a frontier AI
- Train a reward model as distillation
- **+** Much cheaper than human labels
- **+** Faster setup and iterations
- **Lower quality**

Putting this together

- Base (reference) model: pretrain or SFT
- Reward: reward model and/or hardcoded functions
- RL algorithm: trains the LLM to maximize the reward without going too far from the base model or mode-collapsing

Putting this together

- Base (reference) model: pretrain or SFT
- Reward: reward model and/or hardcoded functions
- RL algorithm: trains the LLM to maximize the reward without going too far from the base model or mode-collapsing

Questions?

RLHF Algorithms

Rejection sampling (poor man's RL)

- Sample multiple completions per each prompt
- Pick the best
- Do SFT on those
- [Repeat]
- **+** Easy to implement
- **Good sanity check for the reward**
- Not very efficient/effective

- Components:
 - Policy model
 - Reference model
 - Reward
 - Value (critic) model
 - Duct tape
- Examples:
 - InstructGPT
 - ChatGPT
 - Llama 2

- Do several epochs
- Our current policy is $\pi_{ heta_{
 m old}}$
- Step 1: sample generations

Step 2: construct the reward: reward model + regularization

$$r_{\text{total}} = r(x, y) - \eta \text{KL}(\pi_{\phi}^{\text{RL}}(y|x), \pi^{\text{SFT}}(y|x))$$

Note on KL estimators

- Monte-Carlo estimator
- Difference of current and SFT logprobs

$$KL[q,p] = \sum_x q(x) \log rac{q(x)}{p(x)} = E_{x \sim q}[\log rac{q(x)}{p(x)}]$$

Note on KL estimators

- Monte-Carlo estimator
- Difference of current and SFT logprobs
- Can we do better?

$$egin{align} KL[q,p] &= \sum_x q(x) \log rac{q(x)}{p(x)} = E_{x\sim q}[\log rac{q(x)}{p(x)}] \ &\log rac{q(x)}{p(x)} = -\log r \ &rac{1}{2}(\log rac{p(x)}{q(x)})^2 = rac{1}{2}(\log r)^2 \ &(r-1)-\log r \end{aligned}$$

	bias/true	stdev/true
k1	О	20
k2	0.002	1.42
k3	0	1.42

$$q = N(0,1), p = N(0.1,1)$$

	bias/true	stdev/true
k1	0	2
k2	0.25	1.73
k3	0	1.7

$$p = N(1, 1)$$

- PPO has a per-token reward (because of KL)

- Use advantage instead of return
- We have the value model (critic) V to estimate expected future return

- Step 3: infer the value model and compute advantage (GAE)
 - Future rewards are noisy
 - Value estimations are biased
 - Let's find a middle ground

$$\hat{R}_t^k = r_t + \gamma r_{t+1} + \dots + \gamma^{(k-1)} r_{t+k-1} + \gamma^k V(s_{t+k}),$$

$$\hat{R}_{t}^{k} = r_{t} + \gamma r_{t+1} + \dots + \gamma^{(k-1)} r_{t+k-1} + \gamma^{k} V(s_{t+k}),$$

$$\delta_{t} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{k} = \hat{R}_{t}^{k} - V(s_{t}) = \sum_{k} \gamma^{l} \delta_{t+l} = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^{k} V(s_{t+k}),$$

$$\hat{R}_{t}^{k} = r_{t} + \gamma r_{t+1} + \dots + \gamma^{(k-1)} r_{t+k-1} + \gamma^{k} V(s_{t+k}),$$

$$\delta_{t} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{k} = \hat{R}_{t}^{k} - V(s_{t}) = \sum_{k} \gamma^{l} \delta_{t+l} = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^{k} V(s_{t+k}),$$

$$\hat{A}_{t}^{GAE(\gamma,\lambda)} = (1 - \lambda)(\hat{A}_{t}^{(1)} + \lambda \hat{A}_{t}^{(2)} + \lambda^{2} \hat{A}_{t}^{(3)} + \dots)$$

$$= (1 - \lambda)(\delta_{t} + \lambda(\delta_{t} + \gamma \delta_{t+1}) + \lambda^{2}(\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2}) + \dots)$$

$$= (1 - \lambda)(\delta_{t}(1 + \lambda + \lambda^{2} + \dots) + \gamma \delta_{t+1}(\lambda + \lambda^{2} + \lambda^{3} + \dots)$$

$$+ \gamma^{2} \delta_{t+2}(\lambda^{2} + \lambda^{3} + \lambda^{4} + \dots) + \dots)$$

$$= (1 - \lambda)(\delta_{t}(\frac{1}{1 - \lambda}) + \gamma \delta_{t+1}(\frac{\lambda}{1 - \lambda}) + \gamma^{2} \delta_{t+2}(\frac{\lambda^{2}}{1 - \lambda}) + \dots)$$

$$= \sum_{k=0}^{\infty} (\gamma \lambda)^{l} \delta_{t+l}.$$

- Calculated for each state by looping over a reversed trajectory
- Limit cases:

$$GAE(\gamma, 0) : \hat{A}_t = \delta_t = r_t + \gamma V(s_{t+1}) - V(s_t).$$

$$GAE(\gamma, 1) : \hat{A}_t = \sum_{l=0}^{\infty} \gamma^l \delta_{t+1} = \sum_{l=0}^{\infty} \gamma^l r_{t+1} - V(s_t).$$

- Advantages can be used for Policy Gradient:

$$\nabla_{\theta} \hat{J}(\theta) = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \hat{A}_{t},$$

- Having the replay buffer, do several iterations of optimization
- But don't overfit on the trajectories
- Step 4: construct the loss and optimize policy
- TRPO would do this:

maximize_{\theta}
$$\hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t \right],$$

subject to $\hat{\mathbb{E}}_t \left[\text{KL}(\pi_{\theta_{\text{old}}}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)) \right] \leq \delta,$

- *This is the "surrogate objective", not the true loss, but close

- Instead, PPO does

$$\mathcal{L}_{\text{ppo-clip}}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t, \operatorname{clip} \left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t \right) \right],$$

- No optimization if the ratio is already high enough / low enough

PPO - Proximal Policy Optimization

- Step 4.5: optimize the value function

$$\hat{R}_t = \sum_{l=0}^{\infty} \gamma^l r_{t+l}.$$

$$\mathcal{L}_{\text{critic}}(\phi) = \hat{\mathbb{E}}_t \left[\|V_{\phi}(s_t) - \hat{R}_t\|^2 \right]$$

PPO - Proximal Policy Optimization

- Recap

PPO - Proximal Policy Optimization

- Recap

Questions?

- Components:
 - Policy model
 - Reference model
 - Ranked completion pairs (no reward!)
 - No rollouts. no RL

- Examples:
 - Llama3
 - Qwen 2.5

- Recall reward modelling: preferences come from the reward

$$p^*(y_1 \succ y_2 \mid x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}.$$

$$\mathcal{L}_R(r_{\phi}, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r_{\phi}(x, y_w) - r_{\phi}(x, y_l)) \right]$$

Then the optimal policy maximizes the regularized objective:
 What's the optimal policy?

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} \left[r(x, y) \right] - \beta \mathbb{D}_{KL} \left[\pi(y|x) \mid \mid \pi_{ref}(y|x) \right] \\
= \max_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[r(x, y) - \beta \log \frac{\pi(y|x)}{\pi_{ref}(y|x)} \right] \\
= \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi_{ref}(y|x)} - \frac{1}{\beta} r(x, y) \right] \\
= \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\frac{1}{Z(x)} \pi_{ref}(y|x) \exp\left(\frac{1}{\beta} r(x, y)\right)} - \log Z(x) \right]$$

- Rewrite as KL:

$$\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \left[\mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi^*(y|x)} \right] - \log Z(x) \right] =$$

$$\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \left[\mathbb{D}_{KL}(\pi(y|x) \mid\mid \pi^*(y|x)) - \log Z(x) \right]$$

$$\pi(y|x) = \pi^*(y|x)$$

 $Z(x) = \sum \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right) \qquad \qquad \pi^*(y|x) = \frac{1}{Z(x)}\pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right)$

- Reward function VS optimal policy:

$$\pi_r(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta} r(x, y)\right)$$

$$r(x, y) = \beta \log \frac{\pi_r(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x)$$
Does not matter

- Bijection between the policies and the reward equivalence classes

- Preference likelihood w.r.t. optimal policy:

$$p^*(y_1 \succ y_2 \mid x) = \frac{1}{1 + \exp\left(\beta \log \frac{\pi^*(y_2 \mid x)}{\pi_{\text{ref}}(y_2 \mid x)} - \beta \log \frac{\pi^*(y_1 \mid x)}{\pi_{\text{ref}}(y_1 \mid x)}\right)}$$

Optimize it directly!

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

- What does the gradient update actually do?

$$\nabla_{\theta} \mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) = \\ -\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\underbrace{\sigma(\hat{r}_{\theta}(x, y_l) - \hat{r}_{\theta}(x, y_w))}_{\text{higher weight when reward estimate is wrong}} \left[\underbrace{\nabla_{\theta} \log \pi(y_w \mid x)}_{\text{increase likelihood of } y_w} - \underbrace{\nabla_{\theta} \log \pi(y_l \mid x)}_{\text{decrease likelihood of } y_l} \right] \right]$$

- This is just weighted learning and un-learning!
- No per-token rewards

- Prob(winning) declines :(=> add SFT loss
- Or SFT on winning first
- RM/DPO accuracy ~70%

Bonus: iterated DPO with a reward model

- Components:
 - Policy model
 - Reference model
 - Reward model
- Algorithm:
 - Sample multiple completions
 - Score with reward
 - Pick a good one and a bad one
 - Do DPO on those pairs
 - [Repeat]

Bonus: iterated DPO with a reward model

- Components:
 - Policy model
 - Reference model
 - Reward model
- Algorithm:
 - Sample multiple completions
 - Score with reward
 - Pick a good one and a bad one
 - Do DPO on those pairs
 - [Repeat]

Questions?

RLFH iterations

- E.g. Llama 3:

RLOO - Cohere's REINFORCE Leave-One-Out

- Components:
 - Policy model
 - Reference model
 - Reward model
 - (no value model)

$$\frac{1}{k} \sum_{i=1}^{k} [R(y_{(i)}, x) - \frac{1}{k-1} \sum_{i \neq k} R(y_{(j)}, x)] \nabla \log \pi(y_{(i)}|x) \text{ for } y_{(1)}, ..., y_{(k)} \stackrel{i.i.d}{\sim} \pi_{\theta}(.|x)$$

RLOO - Cohere's REINFORCE Leave-One-Out

- Weighted SFT-like learning on above-average generations and weighted un-learning on below-average
- Like Rejection Sampling and DPO+RM, but uses all generations

$$\frac{1}{k} \sum_{i=1}^{k} [R(y_{(i)}, x) - \frac{1}{k-1} \sum_{i \neq k} R(y_{(j)}, x)] \nabla \log \pi(y_{(i)}|x) \text{ for } y_{(1)}, ..., y_{(k)} \stackrel{i.i.d}{\sim} \pi_{\theta}(.|x)$$

Can be replaced with the average reward

RLOO - Cohere's REINFORCE Leave-One-Out

- No intermediate rewards
- "1 action"
- But in PPO intermediate advantages are synthetic anyway

RLVR: Verifiable rewards and filters

- Objective, hard-coded scores
- No reward hacking*
- Examples
 - Is length < 1024?
 - Is this a valid JSON?
 - Is this numeric answer for a math problem correct?
 - Does this code compile and pass tests?

CGPO - Meta's "Perfect blend"

- Components:

- Policy model
- Reference model
- Reward models
- Binary judges
- Algorithm:
 - Sample multiple completions
 - Score with reward
 - Score 0/1 with judges
 - Increase prob of above average + passing
 - Decrease prob of below average or failing

GRPO: Group Relative Policy Optimization

- Components:
 - Policy model
 - Reference model
 - [Verifiable] Reward
 - (no value model)
- Estimate advantage from the group
- PPO loss
- Move KL from reward into loss

Average Loss per token in specific output -->

- 1. Add surrogate loss across all tokens within a specific output oi.
- 2. Divide the sum by [oil i.e. len(oi) so that each output has equal contribution.

GRPO: Group Relative Policy Optimization

- DeepSeek-R1 and -R1-Zero
- We could start from the base model and remove KL

DAPO: Decoupled Clip and Dynamic sAmpling Policy Optimization

- GRPO + tweaks from ByteDance
- Removes the KL regularization for RLVR
- Tweaks the PPO loss formula (clips higher)
- Discards groups with the same reward
- Sums loss per-token, ensuring high quality of long generations
- Introduces a smooth length penalty to avoid exceeding max_length

$$\begin{split} \mathcal{J}_{\mathrm{DAPO}}(\theta) = & \quad \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\mathrm{old}}}(\cdot|q)} \\ & \quad \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \; \mathrm{clip} \Big(r_{i,t}(\theta), 1 - \varepsilon_{\mathrm{low}}, 1 + \varepsilon_{\mathrm{high}} \Big) \hat{A}_{i,t} \right) \right] \\ & \quad \mathrm{s.t.} \quad 0 < \left| \left\{ o_i \; | \; \mathrm{is_equivalent}(a, o_i) \right\} \right| < G, \end{split}$$

Understanding R1-Zero-Like Training: A Critical Perspective

- Remove biased std norm, allso tweak length norm

$$\begin{aligned} & \textbf{GRPO} \\ \frac{1}{G} \sum_{i=1}^{G} \frac{1}{|\mathbf{o}_{i}|} \sum_{t=1}^{|\mathbf{o}_{i}|} \left\{ \min \left[\frac{\pi_{\theta}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})}{\pi_{\theta_{old}}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})} \hat{A}_{i,t}, \operatorname{clip} \left(\frac{\pi_{\theta}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})}{\pi_{\theta_{old}}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{i,t} \right] \right\}, \\ & \text{where } \hat{A}_{i,t} = \frac{R(\mathbf{q}, \mathbf{o}_{i}) - \operatorname{mean}(\{R(\mathbf{q}, \mathbf{o}_{1}), \dots, R(\mathbf{q}, \mathbf{o}_{G})\})}{\operatorname{std}(\{R(\mathbf{q}, \mathbf{o}_{1}), \dots, R(\mathbf{q}, \mathbf{o}_{G})\})}. \end{aligned}$$

Dr. GRPO

GRPO Done Right (without bias)

$$\frac{1}{G} \sum_{i=1}^{G} \sum_{t=1}^{|\mathbf{o}_{i}|} \left\{ \min \left[\frac{\pi_{\theta}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})}{\pi_{\theta_{old}}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})} \hat{A}_{i,t}, \operatorname{clip} \left(\frac{\pi_{\theta}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})}{\pi_{\theta_{old}}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,< t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{i,t} \right] \right\},$$
where $\hat{A}_{i,t} = R(\mathbf{q}, \mathbf{o}_{i}) - \operatorname{mean}(\{R(\mathbf{q}, \mathbf{o}_{1}), \dots, R(\mathbf{q}, \mathbf{o}_{G})\}).$

Practical considerations

- RLAIF (synthetic markup)
- Length bias
- Reward mixing
- Switch to efficient inference (but beware numeric instability)

Conclusion

- RL helps optimize human preferences, penalize unwanted behaviour
- Allows exploration to find useful reasoning patterns (e.g. reflection)
- The field is evolving:
 - New algorithms
 - Rewards from Al
 - Verifiable rewards
 - Inference-time scaling
- Expect progress in areas with verifiable rewards

Conclusion

- RL helps optimize human preferences, penalize unwanted behaviour
- Allows exploration to find useful reasoning patterns (e.g. reflection)
- The field is evolving:
 - New algorithms
 - Rewards from AI
 - Verifiable rewards
 - Inference-time scaling
- Expect progress in areas with verifiable rewards

Questions?

Takeaways

- RLVR works for tasks with verifiable answers
- Expect progress for these :)
- RL can reinforce successful CoT/reasoning paths
- Leading to inference-time scaling