
Post-training LLMs:
Smarter Algorithms

& Rewards

Kirill Tyshchuk
ex-Yandex, ex-PerplexityAI

Incoming Research Engineer, DeepMind

Plan
- Intro

- LLM, pre-train, SFT
- RL and RLHF
- Reward modelling

- RLHF
- Rejection sampling
- PPO (KL, GAE)
- DPO
- RLOO, CGPO
- Verifiable rewards
- GRPO

2/64

Intro

Intro: LLMs

4/64

Intro: stages of LLM training

5/64

Intro: pretraining
- Gather A LOT of text from the internet
- Train an LLM to predict the next word

- ➕ Cheap data
- ➖ Expensive large-scale training
- ➖ Don’t adhere to instructions well
- ➖ Have to “trick” or fine-tune the model for specific tasks

6/64

Intro: Supervised Fine-Tuning (SFT)
- Collect examples written by humans
- Teach the LLM the output format and basic skills

- ➕ High-quality data
- ➖ Expensive to collect data
- ➖ Expensive to change data
- ➖ Can’t directly penalize unwanted behavior
- ➖ LLM’s outputs won’t be better than its training data

7/64

Questions?

RLHF

Intro: Reinforcement Learning (RL)
- Environment, actions, reward

- ➕ Chains of stochastic actions
- ➕ Non-differentiable reward
- ➖ Training is unstable

Supervised
learning

Reinforcement
learning

10/64

RLHF for LLMs
- Actions = tokens or the whole LLM answer
- Reward = how good the answer is

- ➕ Align the AI with human values
- ➕ Judging is easier than demonstrating
- ➕ Online learning and exploration (e.g. CoT)
- ➖ Still not scalable enough

11/64

RLHF: reward modelling
- Collect pairwise data from humans
- Train a reward model as approximation

- ➕ Scalable, fast inference
- ➕ Captures more nuance
- ➕ Removes calibration problem
- ➖ Reward’s absolute value is meaningless
- ➖ Optimizing imperfect rewards

 leads to overfitting / goodharting

12/64

RLHF: reward modelling
- Reward model training: loss from Bradley-Terry model

13/64

RLAIF: reward modelling
- Collect data from a frontier AI
- Train a reward model as distillation

- ➕ Much cheaper than human labels
- ➕ Faster setup and iterations
- ➖ Lower quality

14/64

Putting this together
- Base (reference) model: pretrain or SFT
- Reward: reward model and/or hardcoded functions
- RL algorithm: trains the LLM to maximize the reward

without going too far from the base model or mode-collapsing

15/64

Putting this together
- Base (reference) model: pretrain or SFT
- Reward: reward model and/or hardcoded functions
- RL algorithm: trains the LLM to maximize the reward

without going too far from the base model or mode-collapsing

Questions?

16/64

RLHF
Algorithms

Rejection sampling (poor man’s RL)
- Sample multiple completions per each prompt
- Pick the best
- Do SFT on those
- [Repeat]

- ➕ Easy to implement
- ➕ Good sanity check for the reward
- ➖ Not very efficient/effective

18/64

PPO - Proximal Policy Optimization
- Components:

- Policy model
- Reference model
- Reward
- Value (critic) model
- Duct tape

- Examples:
- InstructGPT
- ChatGPT
- Llama 2

19/64

PPO - Proximal Policy Optimization
- Do several epochs
- Our current policy is
- Step 1: sample generations

20/64

21/64

PPO - Proximal Policy Optimization
- Step 2: construct the reward: reward model + regularization

22/64

Note on KL estimators
- Monte-Carlo estimator
- Difference of current and SFT logprobs

23/64

Note on KL estimators
- Monte-Carlo estimator
- Difference of current and SFT logprobs
- Can we do better?

24/64

25/64

PPO - Proximal Policy Optimization
- PPO has a per-token reward (because of KL)

26/64

- Use advantage instead of return
- We have the value model (critic) V to estimate expected future return

PPO - Proximal Policy Optimization

27/64

PPO - Proximal Policy Optimization
- Step 3: infer the value model and compute advantage (GAE)

- Future rewards are noisy
- Value estimations are biased
- Let’s find a middle ground

28/64

GAE

29/64

GAE

30/64

GAE

31/64

GAE
- Calculated for each state by looping over a reversed trajectory
- Limit cases:

- Advantages can be used for Policy Gradient:

32/64

33/64

PPO - Proximal Policy Optimization
- Having the replay buffer, do several iterations of optimization
- But don’t overfit on the trajectories
- Step 4: construct the loss and optimize policy
- TRPO would do this:

- *This is the “surrogate objective”, not the true loss, but close
34/64

PPO - Proximal Policy Optimization
- Instead, PPO does

35/64

PPO - Proximal Policy Optimization
- No optimization if the ratio is already high enough / low enough

36/64

PPO - Proximal Policy Optimization
- Step 4.5: optimize the value function

37/64

38/64

PPO - Proximal Policy Optimization
- Recap

39/64

PPO - Proximal Policy Optimization
- Recap

Questions?

40/64

DPO - Direct Preference Optimization
- Components:

- Policy model
- Reference model
- Ranked completion pairs (no reward!)
- No rollouts. no RL

- Examples:
- Llama3
- Qwen 2.5

41/64

DPO - Direct Preference Optimization
- Recall reward modelling: preferences come from the reward

42/64

DPO - Direct Preference Optimization
- Then the optimal policy maximizes the regularized objective:

What’s the optimal policy?

43/64

DPO - Direct Preference Optimization
- Rewrite as KL:

44/64

DPO - Direct Preference Optimization
- Reward function VS optimal policy:

Does not matter

- Bijection between the policies and the reward equivalence classes

45/64

DPO - Direct Preference Optimization
- Preference likelihood w.r.t. optimal policy:

- Optimize it directly!

46/64

DPO - Direct Preference Optimization
- What does the gradient update actually do?

- This is just weighted learning and un-learning!
- No per-token rewards

47/64

DPO - Direct Preference Optimization
- Prob(winning) declines :(

=> add SFT loss
- Or SFT on winning first
- RM/DPO accuracy ~70%

48/64

Bonus: iterated DPO with a reward model
- Components:

- Policy model
- Reference model
- Reward model

- Algorithm:
- Sample multiple completions
- Score with reward
- Pick a good one and a bad one
- Do DPO on those pairs
- [Repeat]

49/64

Bonus: iterated DPO with a reward model
- Components:

- Policy model
- Reference model
- Reward model

- Algorithm:
- Sample multiple completions
- Score with reward
- Pick a good one and a bad one
- Do DPO on those pairs
- [Repeat]

Questions?

50/64

RLFH iterations
- E.g. Llama 3:

51/64

RLOO - Cohere’s REINFORCE Leave-One-Out
- Components:

- Policy model
- Reference model
- Reward model
- (no value model)

52/64

RLOO - Cohere’s REINFORCE Leave-One-Out
- Weighted SFT-like learning on above-average generations

and weighted un-learning on below-average
- Like Rejection Sampling and DPO+RM, but uses all generations

Can be replaced with the average reward 53/64

RLOO - Cohere’s REINFORCE Leave-One-Out
- No intermediate rewards
- “1 action”
- But in PPO intermediate

advantages are synthetic
anyway

54/64

RLVR: Verifiable rewards and filters
- Objective, hard-coded scores
- No reward hacking*

- Examples
- Is length < 1024?
- Is this a valid JSON?
- Is this numeric answer for a math problem correct?
- Does this code compile and pass tests?

55/64

CGPO - Meta’s “Perfect blend”
- Components:

- Policy model
- Reference model
- Reward models
- Binary judges

- Algorithm:
- Sample multiple completions
- Score with reward
- Score 0/1 with judges
- Increase prob of

above average + passing
- Decrease prob of

below average or failing

56/64

GRPO: Group Relative Policy Optimization
- Components:

- Policy model
- Reference model
- [Verifiable] Reward
- (no value model)

- Estimate advantage from the group
- PPO loss
- Move KL from reward into loss

57/64

GRPO: Group Relative Policy Optimization

58/64

GRPO: Group Relative Policy Optimization
- DeepSeek-R1 and -R1-Zero
- We could start from the base model and remove KL

59/64

DAPO: Decoupled Clip and Dynamic sAmpling Policy
Optimization

- GRPO + tweaks from ByteDance
- Removes the KL regularization for RLVR
- Tweaks the PPO loss formula (clips higher)
- Discards groups with the same reward
- Sums loss per-token, ensuring high quality of long generations
- Introduces a smooth length penalty to avoid exceeding max_length

60/64

Understanding R1-Zero-Like Training: A Critical
Perspective

- Remove biased std norm, allso tweak length norm

61/64

Practical considerations
- RLAIF (synthetic markup)
- Length bias
- Reward mixing
- Switch to efficient inference (but beware numeric instability)

62/64

Conclusion
- RL helps optimize human preferences, penalize unwanted behaviour
- Allows exploration to find useful reasoning patterns (e.g. reflection)
- The field is evolving:

- New algorithms
- Rewards from AI
- Verifiable rewards
- Inference-time scaling

- Expect progress in areas with verifiable rewards

63/64

Conclusion
- RL helps optimize human preferences, penalize unwanted behaviour
- Allows exploration to find useful reasoning patterns (e.g. reflection)
- The field is evolving:

- New algorithms
- Rewards from AI
- Verifiable rewards
- Inference-time scaling

- Expect progress in areas with verifiable rewards

Questions?
64/64

Takeaways
- RLVR works for tasks with verifiable answers
- Expect progress for these :)
- RL can reinforce successful CoT/reasoning paths
- Leading to inference-time scaling

65/64

