MCMC СЭМПЛИРОВАНИЕ И SIR МОДЕЛИ

Сергей Николенко СПбГУ— Санкт-Петербург 25 марта 2025 г.

Random facts:

- 25 марта 421 г., по легенде, в день Благовещения Девы Марии римляне, спасшиеся от готов на пустынных островах болотистого побережья, основали Венецию
- 25 марта 1238 г. началась героическая оборона Козельска; за 7 недель монголы потеряли несколько тысяч человек, а затем убили всех козлян, включая грудных детей
- 25 марта 1604 г. Борис Годунов послал казачьего голову Гаврилу Писемского из Сургута и стрелецкого голову Василия Тыркова из Тобольска с заданием основать крепость на берегу реки Томи в татарской земле; так появился Томск
- 25 марта 1918 г. Рада Белорусской Народной Республики провозгласила независимость БНР; впрочем, части Красной армии заняли Минск уже в декабре
- 25 марта 1969 г. Джон Леннон и Йоко Оно начали акцию «В постели за мир» (Bed-In for Peace) против войны во Вьетнаме; семь дней молодожёны приглашали прессу и по 12 часов сидели в постели, призывая к миру
- 25 марта 1975 г. король Саудовской Аравии Фейсал ибн Абдул-Азиз Аль Сауд был убит своим племянником Фейсалом, который мстил за смерть своего брата, застреленного полицейским во время митинга против секуляризации и телевидения

Монте-Карло —

Марковские методы

Общая идея

- Алгоритм Метрополиса-Гастингса; суть алгоритма похожа на выборку с отклонением, но есть важное отличие.
- Распределение q теперь будет меняться со временем, зависеть от текущего состояния алгоритма.
- Как и прежде, нужно распределение q, точнее, семейство $q(x';x^{(t)})$, где $x^{(t)}$ текущее состояние.
- Но теперь q не должно быть приближением p, а должно просто быть каким-нибудь сэмплируемым распределением (например, сферический гауссиан).
- · Кандидат в новое состояние x' сэмплируется из $q(x';x^{(t)})$.

Алгоритм

- Очередная итерация начинается с состояния $x^{(i)}$.
- · Выбрать x' по распределению $q(x';x^{(i)})$.
- Вычислить

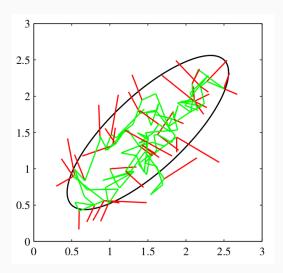
$$a = \frac{p^*(x')}{p^*(x^{(i)})} \frac{q(x^{(i)}; x')}{q(x'; x^{(i)})}.$$

. С вероятностью a (1, если $a \geq 1$) $x^{(i+1)} := x'$, иначе $x^{(i+1)} := x^{(i)}$.

Обсуждение

- Суть в том, что мы переходим в новый центр распределения, если примем очередной шаг.
- Получается этакий random walk, зависящий от распределения p^{st} .
- $\cdot \frac{q(x^{(i)};x')}{q(x';x^{(i)})}$ для симметричных распределений (гауссиана) равно 1, это просто поправка на асимметрию.
- · Отличие от rejection sampling: если не примем, то не просто отбрасываем шаг, а записываем $x^{(i)}$ ещё раз.

Пример блуждания [Bishop]



Обсуждение

- \cdot Очевидно, что $x^{(i)}$ отнюдь не независимы.
- Независимые сэмплы получаются только с большими интервалами.
- Поскольку это random walk, то если большая часть q сосредоточена в радиусе ϵ , а общий радиус p^* равен D, то для получения независимого сэмпла нужно будет минимум... сколько?
- Рассмотрим одномерное случайное блуждание, где на каждом шаге с вероятностью 1/2 точка движется влево или вправо на единицу длины. Какое ожидаемое расстояние точки от нуля после T шагов?

Обсуждение

- Ответ на упражнение: ожидаемое расстояние будет \sqrt{T} .
- Значит, нам потребуется где-то $\left(\frac{D}{\epsilon}\right)^2$ шагов (и это оценка снизу).
- Хорошие новости: это верно для любой размерности. То есть времени надо много, но нет катастрофы при переходе к размерности 1000.

Когда размерность велика

- Когда размерность большая, можно не сразу все переменные изменять по q(x';x), а выбрать несколько распределений q_j , каждое из которых касается части переменных, и принимать или отвергать изменения по очереди.
- Тогда процесс пойдёт быстрее, чаще принимать изменения будем.

Идея сэмплирования по Гиббсу

- Пусть размерность большая. Что делать?
- Давайте попробуем выбирать сэмпл не весь сразу, а покомпонентно.
- Тогда наверняка эти одномерные распределения окажутся проще, и сэмпл мы выберем.

На двух переменных

- Пусть есть две координаты: x и y. Начинаем с (x^0,y^0) .
- · Выбираем x^1 по распределению $p(x|y=y^0)$.
- · Выбираем y^1 по распределению $p(y|x=x^1)$.
- Повторяем.

ПРИМЕР [ВІЅНОР]



Общая схема

• В общем виде всё то же самое: x_i^{t+1} выбираем по распределению

$$p(x_i|x_1^{t+1},\dots,x_{i-1}^{t+1},x_{i+1}^t,\dots,x_n^t)$$

и повторяем.

- Это частный случай алгоритма Метрополиса (для распределений $q(\mathbf{x}';\mathbf{x})=p(x_i'\mid\mathbf{x}_{-i})$, и вероятность принятия получится 1 упражнение).
- Поэтому сэмплирование по Гиббсу сходится, и, так как это тот же random walk по сути, верна та же квадратичная оценка.

Обсуждение

- Нужно знать $p(x_i|x_1,\dots,x_{i-1},x_{i+1},\dots,x_n)$. Это, например, особенно легко знать в байесовских сетях.
- Как будет работать сэмплирование по Гиббсу в байесовской сети?
- Для сэмплирования по Гиббсу не нужно никаких особенных предположений или знаний. Можно быстро сделать работающую модель, поэтому это очень популярный алгоритм.
- В больших размерностях может оказаться эффективнее сэмплить по несколько переменных сразу, а не по одной.

Сэмплирование по Гиббсу

Условие баланса

- Кратко напомним алгоритм Метрополиса-Гастингса
- \cdot Свойство баланса в марковских цепях: для p и T

$$\forall x, x' \quad T(x, x') p(x') = T(x', x) p(x).$$

- Т.е. вероятность того, что мы выберем x и дойдём до x', равна вероятности выбрать x' и дойти до x.
- Такие цепи называются обратимыми (reversible).
- \cdot Если выполняется условие баланса, то p(x) инвариантное распределение (докажите!).

Метрополис--Гастингс

- Очередная итерация начинается с состояния $x^{(i)}$.
- · Выбрать x' по распределению $q(x';x^{(i)})$.
- Вычислить

$$a(x',x) = \frac{p^*(x')}{p^*(x^{(i)})} \frac{q(x^{(i)};x')}{q(x';x^{(i)})}.$$

· С вероятностью a(x',x) (1, если $a\geq 1$) $x^{(i+1)}:=x'$, иначе $x^{(i+1)}:=x^{(i)}$.

Метрополис--Гастингс

• Условие баланса:

$$\begin{split} p(x)q(x;x')a(x',x) &= \min(p(x)q(x;x'), p(x')q(x';x)) = \\ &= \min(p(x')q(x';x), p(x)q(x;x')) = p(x')q(x';x)a(x,x'). \end{split}$$

• Важный параметр – дисперсия распределения q; она задаёт баланс между частым принятием и быстрым перемещением по пространству состояний.

Обсуждение

- \cdot Очевидно, что $x^{(i)}$ отнюдь не независимы.
- Независимые сэмплы получаются только с большими интервалами.
- Поскольку это random walk, то если большая часть q сосредоточена в радиусе ϵ , а общий радиус p^* равен D, то для получения независимого сэмпла нужно будет минимум... сколько?
- Рассмотрим одномерное случайное блуждание, где на каждом шаге с вероятностью 1/2 точка движется влево или вправо на единицу длины. Какое ожидаемое расстояние точки от нуля после T шагов?

Обсуждение

- Ответ на упражнение: ожидаемое расстояние будет \sqrt{T} .
- Значит, нам потребуется где-то $\left(\frac{D}{\epsilon}\right)^2$ шагов (и это оценка снизу).
- Хорошие новости: это верно для любой размерности. То есть времени надо много, но нет катастрофы при переходе к размерности 1000.

Когда размерность велика

- Когда размерность большая, можно не сразу все переменные изменять по q(x';x), а выбрать несколько распределений q_j , каждое из которых касается части переменных, и принимать или отвергать изменения по очереди.
- Тогда процесс пойдёт быстрее, чаще принимать изменения будем.

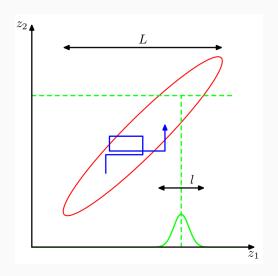
Идея сэмплирования по Гибьсу

- Пусть размерность большая. Что делать?
- Давайте попробуем выбирать сэмпл не весь сразу, а покомпонентно.
- Тогда наверняка эти одномерные распределения окажутся проще, и сэмпл мы выберем.

На двух переменных

- Пусть есть две координаты: x и y. Начинаем с (x^0,y^0) .
- · Выбираем x^1 по распределению $p(x|y=y^0)$.
- · Выбираем y^1 по распределению $p(y|x=x^1)$.
- Повторяем.

ПРИМЕР [ВІЅНОР]



Общая схема

• В общем виде всё то же самое: x_i^{t+1} выбираем по распределению

$$p(x_i|x_1^{t+1},\dots,x_{i-1}^{t+1},x_{i+1}^t,\dots,x_n^t)$$

и повторяем.

- Это частный случай алгоритма Метрополиса (для распределений $q(\mathbf{x}';\mathbf{x})=p(x_i'\mid\mathbf{x}_{-i})$, и вероятность принятия получится 1 упражнение).
- Поэтому сэмплирование по Гиббсу сходится, и, так как это тот же random walk по сути, верна та же квадратичная оценка.

Обсуждение

- Нужно знать $p(x_i|x_1,\dots,x_{i-1},x_{i+1},\dots,x_n)$. Это, например, особенно легко знать в байесовских сетях.
- Как будет работать сэмплирование по Гиббсу в байесовской сети?
- Для сэмплирования по Гиббсу не нужно никаких особенных предположений или знаний. Можно быстро сделать работающую модель, поэтому это очень популярный алгоритм.
- В больших размерностях может оказаться эффективнее сэмплить по несколько переменных сразу, а не по одной.

SLICE SAMPLING

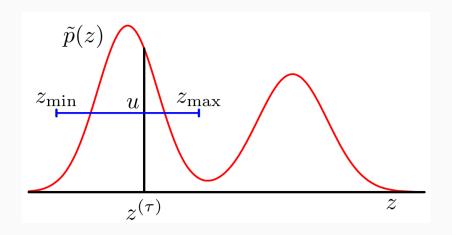
Суть

- Slice sampling ещё один алгоритм, похожий на алгоритм Метрополиса.
- Это аналог алгоритма Метрополиса, но в нём мы хотим настраивать длину шага («дисперсию») автоматически.

Алгоритм в одномерном случае

- Мы хотим сделать random walk из одной точки под графиком p^* в другую точку под графиком p^* , да так, чтобы в пределе получилось равномерное распределение.
- Вот как будем делать переход $(x,u) \to (x',u')$:
 - Вычислим $p^*(x)$ и выберем u' равномерно из $[0,p^*(x)].$
 - Сделаем горизонтальный интервал (x_l, x_r) вокруг x.
 - Затем будем выбирать x' равномерно из (x_l, x_r) , пока не попадём под график.
 - Если не попадаем, модифицируем (x_l,x_r) .
- Осталось понять, как сделать (x_l, x_r) и как его потом модифицировать.

SLICE SAMPLING



Дополнения к алгоритму

- Исходный выбор (x_l, x_r) :
 - Выбрать r равномерно из $[0,\epsilon].$
 - $x_l := x r$, $x_r := x + (\epsilon r)$.
 - Раздвигать границы на ϵ , пока $p^*(x_l)>u'$ и $p^*(x_r)>u'$.
- Модификация (x_l,x_r) : Если x' лежит выше p^* , сокращаем интервал до x'.

Свойства

- В алгоритме Метрополиса нужно было выбирать размер шага. И от него всё зависело квадратично.
- А тут размер шага подправляется сам собой, и эта поправка происходит за линейное время (а то и логарифм).
- В задачах с большой размерностью нужно сначала выбрать (случайно или совпадающими с осями) направление изменения y, а потом проводить алгоритм относительно параметра α в распределении $p^*(x+\alpha y)$.

SIR-модели в эпидемиологии

SIR-модели

- И напоследок конкретный (и весьма актуальный) пример
- Давайте попробуем применить то, о чём мы говорили, к эпидемиологии
- В модели SIR есть:
 - \cdot объекты (люди) $X = \{x_1, \dots, x_N\}$,
 - · каждый эволюционирует между тремя состояниями $\mathcal{S} = \{S, I, R\}^N;$
 - S, I, R ещё общее число объектов в соответствующих состояниях;
 - входные данные число зарегистрированных случаев заболевания, изменяющееся во времени: $\mathbf{y} = \left(y^{(t)}\right)_{t=1}^T$.

SIR-модели

- Введём для каждого объекта траекторию (subject-path) $\mathbf{x}_j = \left(x_j^{(t)}\right)_{t=1}^T, j=1,\dots,N.$
- \cdot Тогда и статистики изменяются во времени: $S^{(t)}$, $I^{(t)}$, $R^{(t)}$.
- · Неизвестные параметры модели это $\theta = \{\beta, \mu, \rho, \pi\}$:
 - \cdot π начальное распределение заболевших, $x_{j}^{(1)} \sim \pi$;
 - ρ вероятность обнаружить инфицированного в общей популяции, то есть вероятность того, что человек x_j в момент t, когда $x_j^{(t)} = I$, будет обнаружен тестированием и зачислен в данные $y^{(t)}$; тогда $y_t \mid I^{(t)}, \rho \sim \mathrm{Binom}(I^{(t)}, \rho)$;
 - $\cdot \mu$ вероятность для заболевшего выздороветь, то есть вероятность перехода из состояния I в состояние R;
 - β самый интересный параметр, вероятность заразиться за один отсчёт времени *от одного инфицированного человека*; будем предполагать самую простую модель, в которой вероятность заразиться от одного инфицированного равна β и все эти события независимы, а значит, вероятность остаться здоровым равна $(1-\beta)^{I^{(t)}}$.

SIR-модели

- Обозначим вектор состояний всех людей, кроме x_j , через \mathbf{x}_{-j} (и остальные величины так же).
- · Вероятности перехода из $x_j^{(t-1)}$ в $x_j^{(t)}$:

$$\begin{array}{lll} p\left(x_{j}^{(t)}=S\Big|x_{j}^{(t-1)}=S,\mathbf{x}_{-j}^{(t-1)}\right) &=& (1-\beta)^{I_{-j}^{(t-1)}},\\ p\left(x_{j}^{(t)}=I\Big|x_{j}^{(t-1)}=S,\mathbf{x}_{-j}^{(t-1)}\right) &=& 1-(1-\beta)^{I_{-j}^{(t-1)}},\\ p\left(x_{j}^{(t)}=R\Big|x_{j}^{(t-1)}=I,\mathbf{x}_{-j}^{(t-1)}\right) &=& \mu,\\ p\left(x_{j}^{(t)}=I\Big|x_{j}^{(t-1)}=I,\mathbf{x}_{-j}^{(t-1)}\right) &=& 1-\mu,\\ p\left(x_{j}^{(t)}\Big|x_{j}^{(t-1)},\mathbf{x}_{-j}^{(t-1)}\right) &=& 0\quad \text{во всех остальных случаях}. \end{array}$$

• Скрытые переменные — те же самые траектории ${f x}$ (не зря же мы их вводили).

• Тогда полное правдоподобие $L(X,Y\mid\theta)$ получается как

$$\begin{split} L(X,Y\mid\theta) = & p(Y\mid X,\rho) p\left(X^{(1)}|\pi\right) p\left(X|X^{(1)},\beta,\mu\right) \\ = & \left[\prod_{t=1}^{T} {I^{(t)}\choose y^{(t)}} \rho^{y^{(t)}} (1-\rho)^{I^{(t)}-y^{(t)}}\right] \times \\ & \times \left[\pi_S^{S^{(1)}} \pi_I^{I^{(1)}} \pi_R^{R^{(1)}}\right] \cdot \left[\prod_{t=2}^{T} \prod_{j=1}^{N} p\left(x_j^t|\mathbf{x}_{-j}^{t-1},\theta\right)\right], \end{split}$$

где $p\left(x_{j}^{t}|\mathbf{x}_{-j}^{t-1},\theta\right)$ определено матрицей вероятностей переходов.

• Апостериорное распределение, которое нам нужно:

$$p(\theta|Y) \propto p(\theta)p(Y|\theta) = \int L(Y \mid X, \theta)p(X|\theta)p(\theta)dX,$$

и этот интеграл, конечно, никак не подсчитать. Что же делать?

- На помощь приходит алгоритм Метрополиса-Гастингса, точнее, сэмплирование по Гиббсу.
- Будем сэмплировать траектории \mathbf{x}_j последовательно, зафиксировав все остальные \mathbf{x}_{-j} , данные \mathbf{y} и параметры модели θ :

$$\mathbf{x}_{j} \sim p\left(\mathbf{x}_{j} | \mathbf{x}_{-j}, \mathbf{y}, \theta\right).$$

- Для этого нужно сначала понять, как выглядит распределение на траектории \mathbf{x}_{j} .
- Очевидно, её элементы $x_j^{(t)}$ нельзя считать независимыми, ведь человек проходит цепочку состояний $S \to I \to R$ только один раз и слева направо (если проходит вовсе). Всё это на первый взгляд опять выглядит сложно...

- \cdot …но здесь получается модель, которая нам уже хорошо знакома: последовательность случайных переменных $x_j^{(t)}$ образует марковскую цепь, а если добавить ещё известные нам данные, то получится скрытая марковская модель.
- Выбросим \mathbf{x}_j из множества траекторий, получив статистики по всей остальной популяции $S_{-j}^{(t)}$, $I_{-j}^{(t)}$ и $R_{-j}^{(t)}$. Тогда параметры скрытой марковской модели таковы:
 - скрытые состояния $x_{j}^{(t)}$ с множеством возможных значений $\{S,I,R\};$
 - · матрица вероятностей перехода $p\left(x_j^t|\mathbf{x}_{-j}^{t-1},\theta\right)$, определённая выше;
 - наблюдаемые y, вероятности получить которые зависят от того, заражён ли человек x_i в момент времени t:

$$p\left(y^{(t)}\middle|x_{j}^{(t)}\right) = \operatorname{Binom}\left(I_{-j}^{(t)} + \left[x_{j}^{(t)} = I\right], \rho\right).$$

- Чтобы сэмплировать одну траекторию \mathbf{x}_j при условии фиксированных остальных траекторий \mathbf{x}_{-j} , нужно сэмплировать траекторию вдоль скрытых состояний марковской модели.
- · Здесь \mathbf{x}_j будет эволюционировать от состояния S к состоянию R последовательно, с вероятностями перехода \mathbf{x}_j на каждом шаге от S к R

$$p\left(x_{j}^{(t)} = I \middle| x_{j}^{(t-1)} = S, \mathbf{x}_{-j}\right) = 1 - (1 - \beta)^{I_{-j}^{(t-1)}},$$

а вероятность перехода от I к R фиксирована и равна μ .

- Стохастический алгоритм Витерби: два прохода по НММ слева направо и справа налево.
- На прямом проходе подсчитываем матрицы совместных вероятностей пар последовательных состояний

$$Q_{j}^{(t)} = \left(q_{j,s',s}^{t}
ight)_{s',s \in \{S,I,R\}},$$
 где

$$q_{j,s',s}^t = p\left(x_j^{(t)} = s, x_j^{(t-1)} = s' \middle| Y, \mathbf{x}_{-j}, \theta\right).$$

• Фактически в нашей модели возможных пар таких состояний всего шесть (остальные переходы запрещены), и все матрицы Q выглядят как

$$Q_j^{(t)} = \begin{pmatrix} q_{j,S,S}^{(t)} & q_{j,S,I}^{(t)} & 0\\ 0 & q_{j,I,I}^{(t)} & q_{j,I,R}^{(t)}\\ 0 & 0 & q_{j,R,R}^{(t)} \end{pmatrix}.$$

 \cdot Чтобы вычислить $q_{j,s',s}^{(t)}$, нужно подсчитать

$$\begin{split} q_{j,s',s}^{(t)} &= p\left(x_j^{(t)} = s, x_j^{(t-1)} = s' \middle| \mathbf{y}, \mathbf{x}_{-j}, \theta\right) \propto \\ &\propto p\left(x_j^{(t-1)} = s' \middle| \mathbf{y}, \mathbf{x}_{-j}, \theta\right) p\left(x_j^{(t)} = s \middle| x_j^{(t-1)} = s', \mathbf{y}, \mathbf{x}_{-j}, \theta\right) \times \\ &\times p\left(y_t \middle| x_j^{(t)} = s, \mathbf{y}, \mathbf{x}_{-j}, \theta\right) = \\ &= \left[\sum_{s''} q_{j,s'',s'}^{(t-1)}\right] \cdot p\left(x_j^{(t)} = s \middle| x_j^{(t-1)} = s', \mathbf{x}_{-j}, \theta\right) \times \\ &\times p_{\mathrm{Binom}}\left(y^{(t)} \mid I_{-j}^{(t)} + \left[x_j^{(t)} = I\right], \rho\right), \end{split}$$

где $p\left(x_{j}^{(t)}=s\middle|x_{j}^{(t-1)}=s',\mathbf{x}_{-j},\theta\right)$ — это те самые вероятности перехода в нашей модели, подсчитанные по статистикам $S_{-j}^{(t-1)}$, $I_{-j}^{(t-1)}$ и $R_{-j}^{(t-1)}$, а p_{Binom} — вероятность по биномиальному распределению.

• Потом нужно нормировать, учитывая, что $\sum_{s,s'} q_{j,s',s}^{(t)} = 1$.

• Когда все матрицы $Q_j^{(t)}$ подсчитаны, их можно использовать для того, чтобы сэмплировать целые последовательности скрытых состояний. Для этого нужно разложить $p(\mathbf{x}_j \mid \mathbf{x}_{-j}, \mathbf{y}, \theta)$ не с начала времён, а с конца:

$$\begin{split} p\left(\mathbf{x}_{j} \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) &= p\left(x_{j}^{(T)} \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) p\left(x_{j}^{(T-1)} \middle| x_{j}^{(T)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right) \times \dots \\ & \dots \times p\left(x_{j}^{(2)} \middle| x_{j}^{(3)}, \dots, x_{j}^{(T)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right) \times \\ & \times p\left(x_{j}^{(1)} \middle| x_{j}^{(2)}, \dots x_{j}^{(T)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right). \end{split}$$

 \cdot И можно сэмплировать справа налево по матрицам Q.

· Последнее состояние сэмплируется из сумм по строкам последней матрицы $Q_j^{(T)}$:

$$\begin{split} x_j^{(T)} &\sim p\left(x_j^{(T)} = s \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) = \\ &= \sum_{s'} p\left(x_j^{(T)} = s, x_j^{(T-1)} = s' \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) = \\ &= \sum_{s'} q_{j,s',s}^{(T)}. \end{split}$$

• А дальше достаточно, по марковскому свойству последовательности \mathbf{x}_j , сэмплировать при условии следующего состояния, то есть использовать распределение

$$\begin{split} x_j^{(t)} \sim p\left(x_j^{(t)} = s \middle| x_j^{(t+1)}, \mathbf{x}_{-j}, \mathbf{y}, \theta\right) \propto \\ \propto p\left(x_j^{(t)} = s, x_j^{(t+1)} = s' \middle| \mathbf{x}_{-j}, \mathbf{y}, \theta\right) = q_{j, s, s'}^{(t+1)}. \end{split}$$

- Так мы получим новую траекторию \mathbf{x}_j , и её можно подставить в X на место старой траектории и продолжать процесс сэмплирования: выбрать новый индекс j и повторить всё заново.
- В какой-то момент надо будет остановиться и обновить значения параметров.
- Теоретически можно даже сделать полноценный байесовский вывод, пересчитав параметры сопряжённых априорных распределений.
- Три основных параметра β , ρ и μ это три монетки, а оставшийся параметр π кубик с тремя гранями. Поэтому сопряжёнными априорными распределениями будут

$$\begin{array}{lclcl} p(\beta) & = & \mathrm{Beta}\left(a_{\beta}, b_{\beta}\right), & p(\mu) & = & \mathrm{Beta}\left(a_{\mu}, b_{\mu}\right), \\ p(\rho) & = & \mathrm{Beta}\left(a_{\rho}, b_{\rho}\right), & p(\pi) & = & \mathrm{Dir}\left(\mathbf{a}_{\pi}\right). \end{array}$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - \cdot к параметрам \mathbf{a}_{π} добавляются статистики того, в каких состояниях начинаются траектории:

$$a_{\pi,s} := a_{\pi,s} + \sum_{j=1}^{N} \left[x_{j}^{(1)} = s \right];$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - параметры a_{μ} и b_{μ} обновляются в зависимости от того, каково было ожидаемое число переходов из состояния I в состояние R (выздоровлений) и сколько всего времени люди провели в состоянии I (проболели):

$$\begin{split} a_{\mu} := & a_{\mu} + \sum_{t=1}^{T-1} \sum_{j=1}^{N} \left[x_{j}^{(t)} = I, x_{j}^{(t+1)} = R \right], \\ b_{\mu} := & b_{\mu} + \sum_{t=1}^{T} I^{(t)} - \sum_{t=1}^{T-1} \sum_{j=1}^{N} \left[x_{j}^{(t)} = I, x_{j}^{(t+1)} = R \right]. \end{split}$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - аналогично, параметры a_{ρ} и b_{ρ} получаются из статистики выявленных случаев, попавших в ${f y}$, по сравнению со случаями, которые оказались только в $I^{(t)}$:

$$a_{\rho} := a_{\rho} + \sum_{t=1}^{T} y^{(t)}, \quad b_{\rho} := b_{\rho} + \sum_{t=1}^{T} \left(I^{(t)} - y^{(t)} \right);$$

• Параметры a_{β} и b_{β} самые интересные: нужно подсчитать ожидаемое число «возможностей заразиться», которые реализовались и не реализовались для всех людей в популяции:

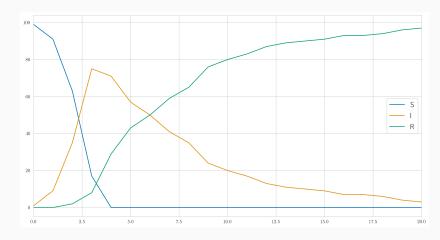
$$p\left(x_{j}$$
 заразился при одном контакте $\left|x_{j}\right.$ заразился $ight)=\dfrac{eta}{1-\left(1-eta
ight)^{I^{(t)}}},$

а значит,

$$\begin{split} a_{\beta} := & a_{\beta} + \sum_{t, j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = I} \frac{\beta I^{(t)}}{1 - \left(1 - \beta\right)^{I^{(t)}}}, \\ b_{\beta} := & b_{\beta} + \sum_{t, j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = S} I^{(t)} + \sum_{t, j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = I} \left(I^{(t)} - \frac{\beta I^{(t)}}{1 - \left(1 - \beta\right)^{I^{(t)}}}\right) \end{split}$$

- Итого получили все компоненты нашей (сильно упрощённой!) SIR-модели: скрытые переменные в виде траекторий элементов популяции, алгоритм для сэмплирования по Гиббсу, который сэмплирует одну траекторию при условии всех остальных, и правила обновления параметров, которыми можно воспользоваться после того, как марковская цепь сэмплирования достаточно долго поработала.
- Давайте теперь посмотрим на практику...

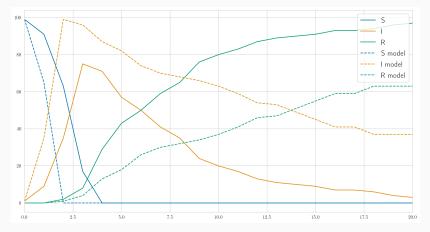
• Пример визуализации статистик заражения при параметрах $N=100,\, T=20,\, \rho=0.1,\, \beta=0.05,\, \mu=0.1$:



• Пример обучения параметров модели SIR:



• И если посэмплировать популяции из полученных параметров и из настоящих, получится совсем одно и то же:



• Какие выводы? Как это использовать на практике?

Спасибо!

Спасибо за внимание!

