ТРАНСФОРМЕРЫ ДЛЯ ИЗОБРАЖЕНИЙ

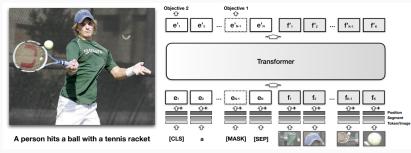
Сергей Николенко СПбГУ— Санкт-Петербург 16 октября 2025 г.

Random facts:

- 16 октября День босса, профессиональный праздник руководителей всех уровней, от бригадира до президента страны; Патриция Хароски в 1958 году предложила отмечать этот праздник (в день рождения своего отца, у которого Патриция работала секретарём), а в 1962 г. губернатор штата Иллинойс придал ему официальный статус
- 16 октября 1793 г. Мария-Антуанетта, не уронив королевского достоинства, сама взошла на эшафот и сама легла под нож гильотины
- 16 октября 1909 г. Уильям Тафт и Порфирио Диаз начали первый в истории саммит между президентами США и Мексики; в день саммита планировалось покушение на кого-то из них (а может, обоих), но в паре метров от президентов убийцу задержали
- 16 октября 1975 г., в день, когда Рахиме Бану Бегум исполнилось три года, у неё диагностировали натуральную оспу Variola major; через два месяца Рахима поправилась, и это был последний зафиксированный в истории случай
- 16 октября 1978 г. Иоанн Павел II стал 264-м Папой Римским и первым неитальянцем на папском престоле с 1523 года

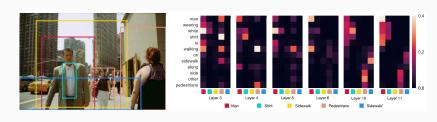
VISUAL BERT

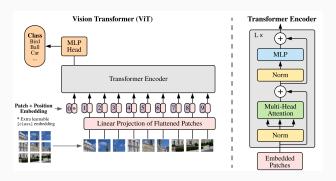
- Картинки это же не последовательности? Ну да, но...
- · Visual BERT: давайте вместе моделировать картинки и подписи к ним
- Используем предобученный object detection вроде Faster R-CNN, вырезаем объекты, строим их вложения через CNN и positional embeddings, подаём в единый трансформер с подписью



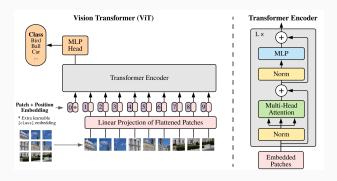
VISUAL BERT

- Предобучение: masked language modeling + sentence-image prediction (подходит ли подпись к рисунку?)
- Примеры голов внимания показывают, как слова из подписи «смотрят» на соответствующие объекты



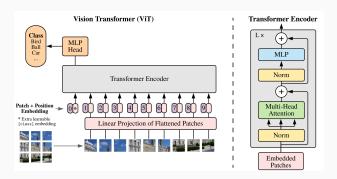


- Самая успешная Transformer-архитектура для картинок: Vision Transformer (ViT; Dosovitsky et al., 2020)
- ViT прямолинейная модификация BERT, но теперь на входе токены из изображения, а не текста

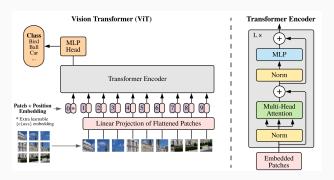


• Вход режется на маленькие патчи: $H \times W$ картинка с C каналами $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$ превращается в последовательность патчей $\mathbf{x}_p \in \mathbb{R}^{N \times P^2 \times C}$, где $N = HW/P^2$ — число $P \times P$ патчей

4

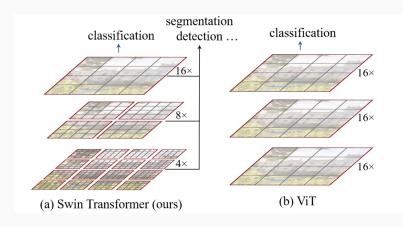


- Патчи превращаются во вложения через обычную линейную проекцию, последовательность векторов подаётся в кодировщик трансформера
- Предобучение: masked patch modeling, прямо как BERT; половину входов маскируем и предсказываем

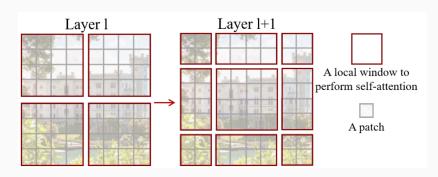


- ViT использует positional encodings, но те же самые, линейные!
- Dosovitsky et al. экспериментировали с 2D-кодировками, но никакого улучшения не нашли...

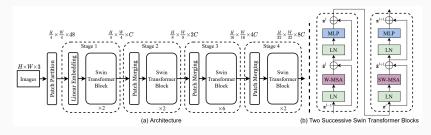
• Swin Transformer (Liu et al., 2021; **s**hifted **win**dows): похож на ViT, но иерархический



- Обрабатывает патчи на нескольких масштабах, вычисляя самовнимание по патчам с CNN-подобной архитектурой
- Окна сдвигаются между слоями, и это даёт связь между частями изображения

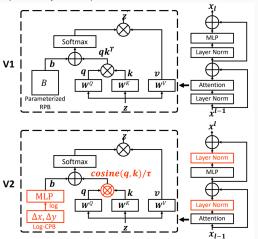


• Сама архитектура сокращает геометрию, как классические CNN backbones:



 Swin может масштабироваться до высоких разрешений и может использоваться для задач распознавания объектов и сегментации

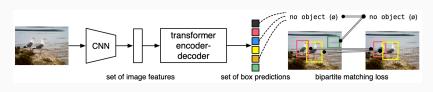
• Потом вышел Swin Transformer v2 (Liu et al., 2022) — это Swin Transformer, отмашстабированный до 3В параметров, на картинках до 1536×1536 пикселей, что ещё сильнее улучшает обработку изображений во всех задачах



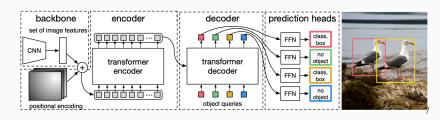
РАСПОЗНАВАНИЕ ОБЪЕКТОВ

С ТРАНСФОРМЕРАМИ

- DETR (DEtection TRansformer; Carion et al., 2020) прямая адаптация трансформеров
- Распознавание объектов задача предсказания множества; DETR добавляет основанную на множествах глобальную функцию потерь, которая даёт уникальные предсказания через паросочетания, и архитектуру кодировщик-декодировщик на базе трансформера



- DETR использует традиционный сверточный backbone (ResNet y Carion et al., но можно взять что угодно)
- Затем DETR выравнивает признаки, добавляет позиционное кодирование и перемешивает признаки с помощью кодировщика
- Декодировщик берёт на вход небольшое число объектных запросов, обучаемых позиционных вложений, с вниманием на выход кодировщика
- Выход проходит через маленькую feedforward сеть, которая предсказывает класс и bbox (или "нет объекта")



- Функция потерь происходит из паросочетания:
 - · для множества предсказаний $\hat{\mathbf{y}} = \{\hat{y}_i\}_{i=1}^N$ и истинных объектов $\mathbf{y} = \{y_i\}_{i=1}^N$ (плюс \emptyset , т.к. N должно быть большим), ищем перестановку $\sigma_* = \arg\min_{\sigma} \sum_{i=1}^N \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)})$ с помощью венгерского алгоритма, где $\mathcal{L}_{\mathrm{match}}$ это стоимость сопоставления;
 - · $\mathcal{L}_{\mathrm{match}}$ объединяет точность предсказаний для $y_i=(c_i,b_i)$, где c_i метка класса (возможно, \emptyset), а $b_i\in\mathbb{R}^4$ bbox:

$$\mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)}) = -[c_i \neq \emptyset] \hat{p}_{\sigma(i)}(c_i) + [c_i \neq \emptyset] \mathcal{L}_{\mathrm{box}}(b_i, \hat{b}_{\sigma(i)});$$

здесь $\mathcal{L}_{\mathrm{box}}$ – комбинация функций потерь от IoU и L_1 ;

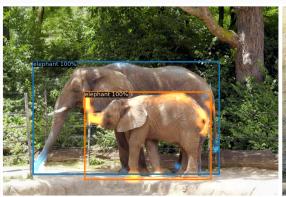
• после сопоставления фактическая функция потерь

$$\mathcal{L}_{\mathrm{Hungarian}}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^{N} \left(-\log \hat{p}_{\sigma_*(i)}(c_i) + [c_i \neq \emptyset] \mathcal{L}_{\mathrm{box}}(b_i, \hat{b}_{\sigma(i)}) \right);$$

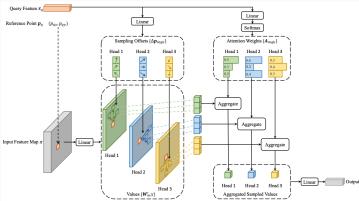
теперь мы предсказываем и $c_i=\emptyset$, но на практике они получают меньший вес.

• Хорошие результаты, и DETR способен распределять экземпляры объектов по головам внимания:

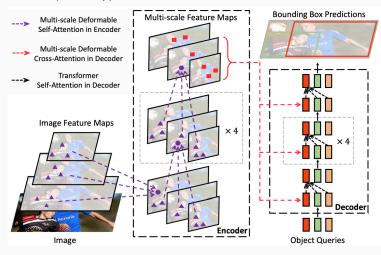
- Внимание декодера для каждого объекта локализовано на границах
- Скорее всего, DETR разделяет экземпляры глобальным вниманием в кодировщике, а декодеру остается только выяснить классы и границы объектов



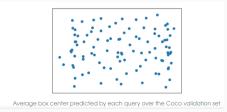
- DETR работает хорошо, но не очень хорошо на маленьких объектах, а квадратичная сложность делает мультимасштабное распознавание очень сложной задачей
- Deformable DETR (Zhu et al., 2021): давайте используем деформируемое внимание и будем обращать внимание только на несколько пикселей



• Общая архитектура:

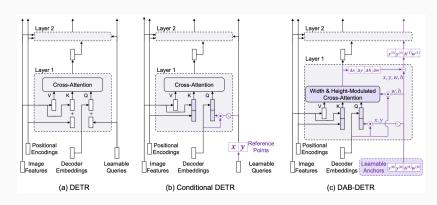


• Позиционные запросы DETR – это в основном гибкие обучаемые якоря для ограничивающих прямоугольников; они обучаются глобально и не зависят от текущего изображения

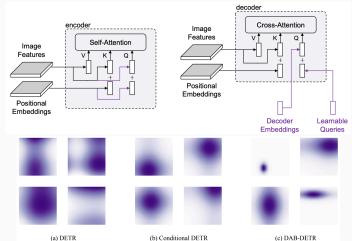


- Обучение пространственных запросов на данных (без каких-либо фиксированных anchor boxes) важная часть DETR, но DETR обучается очень, очень медленно, и пространственные запросы большой фактор в этом
- Как мы можем это улучшить?

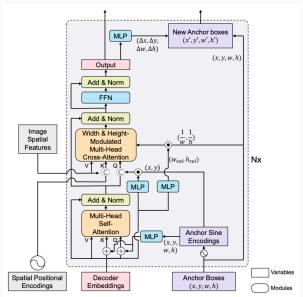
- DAB-DETR (Dynamic Anchor Box DETR; Liu et al., 2022): давайте вернемся к идее anchor boxes
- Обучаемые якоря постепенно уточняются от слоя к слою в декодере, и теперь они имеют определенную семантику:



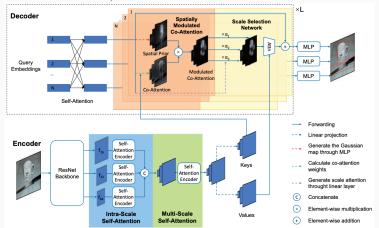
 Ширина и высота anchor box используются для модуляции перекрестного внимания, поэтому внимание становится гораздо лучше локализованным, и это помогает ускорить обучение



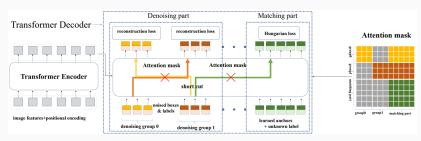
· Обзор:



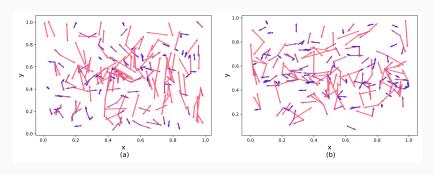
• SMCA DETR (Spatially Modulated Co-Attention DETR; Gao et al., 2021) модулирует веса внимания через пространственные априорные распределения; то, что рядом, более важно: пространственные веса на основе предсказанных смещений относительно опорных точек



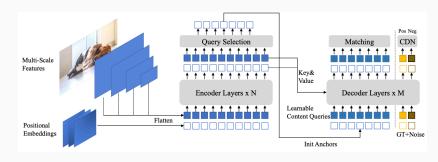
- Другая проблема происходит от оптимального паросочетания: небольшое изменение весов может привести к совершенно другому результату, предсказания нестабильны, особенно в начале обучения
- DN-DETR (Li et al., 2022): давайте добавим другую цель обучения – реконструкцию зашумленных истинных прямоугольников, которые подаются с дополнительными запросами



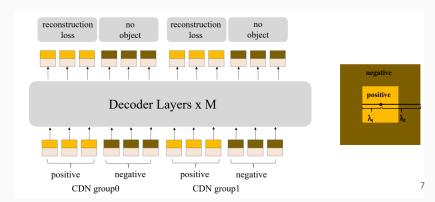
- Это улучшает предсказание смещений: каждый запрос должен предсказывать очень разные смещения из-за нестабильности сопоставления, а запросы шумоподавления служат "хорошими якорями" для предсказания смещений
- В результате якоря располагаются ближе к своим целям (DAB-DETR слева, DN-DETR справа):



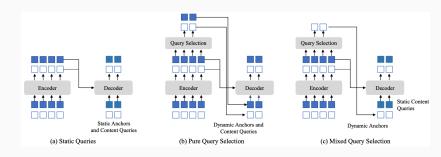
- DINO (DETR with Improved DeNoising Anchor Boxes; Zhang et al., 2022): модификация DETR, основанная на идее DN-DETR
- Базовая структура более или менее та же:



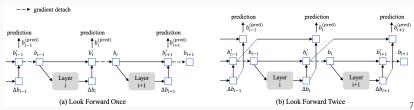
- DN-DETR нужны хорошие якоря для улучшения обучения смещений; но что насчет плохих якорей, у которых нет близких истинных объектов?
- DINO добавляет отрицательные примеры для смягчения этого; часть входов это якоря с большим шумом, которые должны быть отклонены



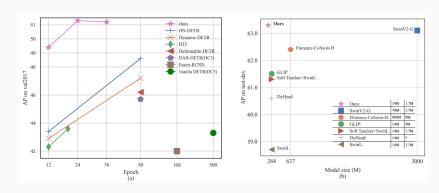
 Смешанный выбор запросов: позиционные запросы инициализируются из предложений кодировщика, а содержательные запросы остаются независимыми



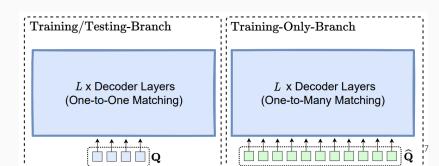
- · Двойной lookahead: качество ограничивающего прямоугольника зависит от текущего якоря (позиционного запроса) и текущего предсказания смещения
- Deformable DETR блокировал обратное распространение градиента для стабилизации обучения: параметры слоя iобновляются на основе вспомогательной функции потерь от прямоугольников b_i
- DINO блокирует градиенты еще на один шаг дальше, поэтому параметры слоя i обновляются на основе вспомогательной функции потерь от прямоугольников b_i и b_{i+1}



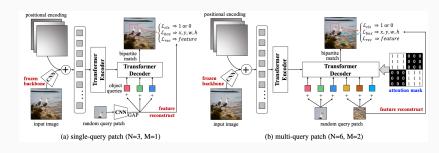
• Очень хорошие результаты, быстрое обучение (слева с ResNet-50 backbone)



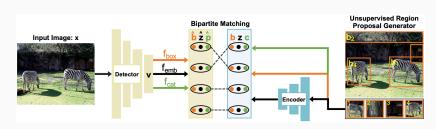
- H-Deformable-DETR (Jia et al., 2023) очень простая и интересная идея
- У нас очень мало положительных примеров, так что давайте их копировать!
- При обучении мы добавляем дополнительные запросы, которые должны предсказывать те же истинные прямоугольники, с масками внимания, которые разделяют группы запросов



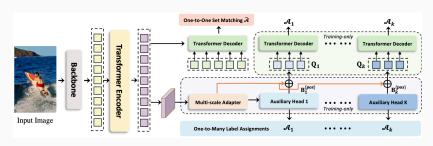
- · Как еще мы можем исправить долгое время обучения DETR?
- UP-DETR (Dai et al., 2021) давайте добавим предобучение без обучения, self-supervised; мы берем случайный кусок и просим DETR предсказать его положение и восстановить его признаки (это нужно, потому что у нас нет меток классификации, но нужно сохранить семантику):



- DETReg (Bar et al., 2022) вместо случайных кропов давайте используем объекты или области, найденные другими алгоритмами, возможно, даже selective search
- Мы также можем предсказывать вложения для этих псевдо-объектов



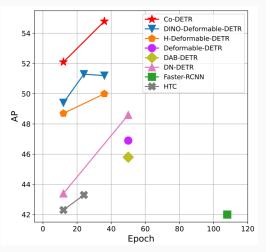
• Co-DETR (Zong et al., 2023) добавляет несколько вспомогательных голов из других object detection моделей; новые положительные примеры через паросочетания



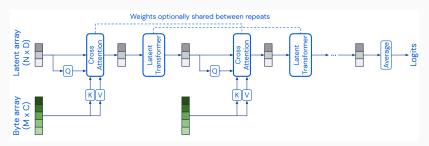
Head i	Loss \mathcal{L}_i	Assignment A_i		
		$\{pos\}, \{neg\}$ Generation	\mathbf{P}_i Generation	$\mathbf{B}_{i}^{\{pos\}}$ Generation
Faster-RCNN [27]	cls: CE loss,	{pos}: IoU(proposal, gt)>0.5	{pos}: gt labels, offset(proposal, gt)	positive proposals
	reg: GIoU loss	{neg}: IoU(proposal, gt)<0.5	$\{neg\}$: gt labels	(x_1, y_1, x_2, y_2)
ATSS [40]	cls: Focal loss	{pos}:IoU(anchor, gt)>(mean+std)	{pos}: gt labels, offset(anchor, gt), centerness	positive anchors
	reg: GIoU, BCE loss	{neg}: IoU(anchor, gt)<(mean+std)	$\{neg\}$: gt labels	(x_1, y_1, x_2, y_2)
RetinaNet [21]	cls: Focal loss	{pos}: IoU(anchor, gt)>0.5	{pos}: gt labels, offset(anchor, gt)	positive anchors
	reg: GIoU Loss	$\{neg\}$: IoU(anchor, gt)<0.4	$\{neg\}$: gt labels	(x_1, y_1, x_2, y_2)
FCOS [31]	cls: Focal Loss	$\{pos\}$: points inside gt center area	{pos}: gt labels, ltrb distance, centerness	FCOS point (cx, cy)
	reg: GIoU, BCE loss	$\{neg\}$: points outside gt center area	$\{neg\}$: gt labels	$w = h = 8 \times 2^{2+j}$

DETR и аналоги

• График для ResNet-50 backbone:



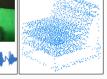
• Perceiver от DeepMind (Jaegle et al., 2021a) – это архитектура общего назначения, которая может обрабатывать множество различных модальностей



- Основная идея избежать квадратичной сложности, используя латентные единицы меньшей размерности
- Это квадратично по числу запросов, поэтому мы используем небольшой вектор латентных переменных для запросов и добавляем большие массивы для K и V

8

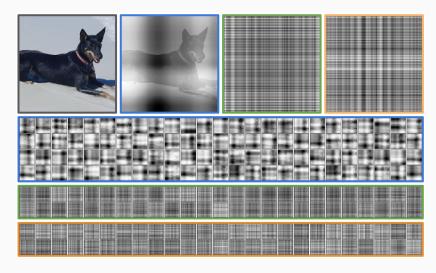
• Обучен на изображениях, облаках точек, аудио и видео, без специальных кодировщиков и без изменения архитектуры



ResNet-50 (He et al., 2016)	77.6
ViT-B-16 (Dosovitskiy et al., 2021)	77.9
ResNet-50 (FF)	73.5
ViT-B-16 (FF)	76.7
Transformer (64x64, FF)	57.0
Perceiver (FF)	78.0

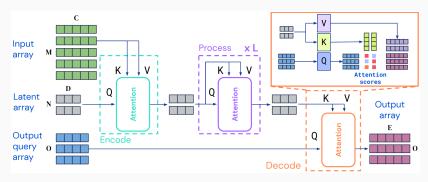
	Raw	Perm.	Input RF
ResNet-50 (FF)	73.5	39.4	49
ViT-B-16 (FF)	76.7	61.7	256
Transformer (64x64) (FF)	57.0	57.0	4,096
Perceiver:			
(FF)	78.0	78.0	50,176
(Learned pos.)	70.9	70.9	50,176

• Карты внимания опускаются до отдельных пикселей:



- *Perceiver IO* (Jaegle et al., 2021b), следующая версия, которая также позволяет строить большие выходы
- Может обрабатывать еще более разнообразные структурированные данные: многозадачное понимание языка, плотные визуальные задачи (например, optical flow), гибридные плотные/разреженные мультимодальные задачи (например, автокодировщик для видео+аудио), задачи с символьными выходами (например, StarCraft II) и так далее

· Архитектура Perceiver IO:



• Фактические выходные запросы конструируются автоматически путем комбинирования набора векторов, которые описывают свойства текущего выхода

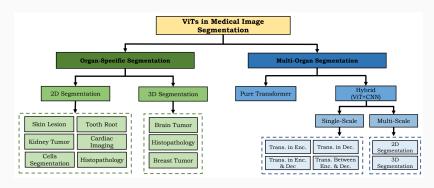
медицинских

CASE STUDY:

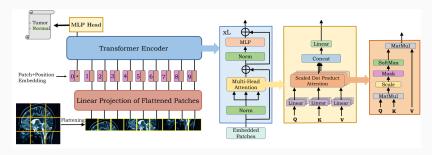
СЕГМЕНТАЦИЯ

изображений

- Сегментация звучит как более сложная задача для трансформеров
- Но вот таксономия только для ViT, только в сегментации медицинских снимков, причём три года назад (Shamshad et al., 2022):

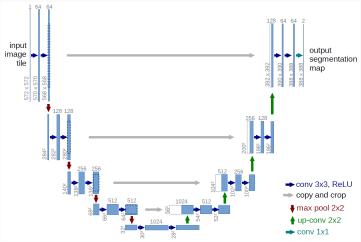


• В медицинских задачах маленькие датасеты, поэтому трудно ожидать ViT, обученный с нуля на медицинском датасете

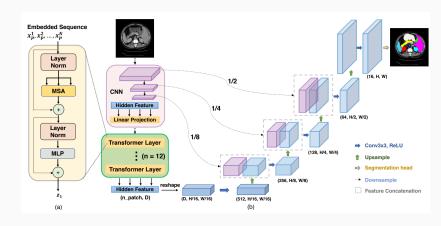


• Иногда это возможно, но часто приходится модифицировать архитектуру, чтобы добавить априорную информацию о медицинских особенностях

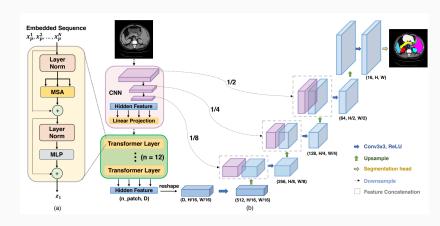
• В сегментации U-Net долгое время была самой важной архитектурой для medical imaging:



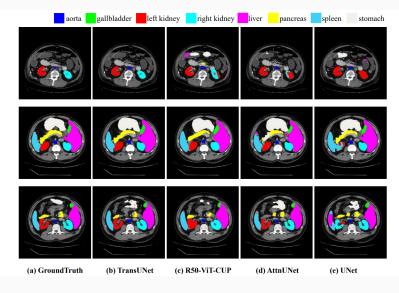
• TransUNet (Chen et al., 2021): давайте используем трансформеры в кодировщике U-Net



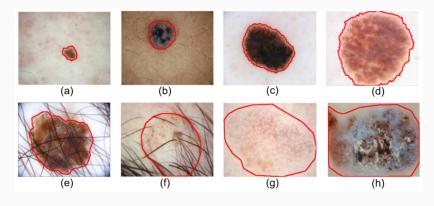
• ViT получает вложения патчей из разных слоев CNN, а повышение разрешения аналогично U-Net:



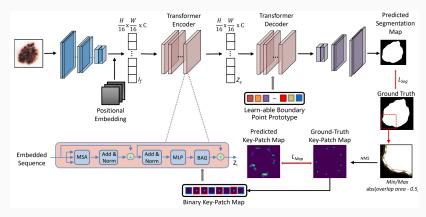
· TransUNet сохраняет больше деталей:



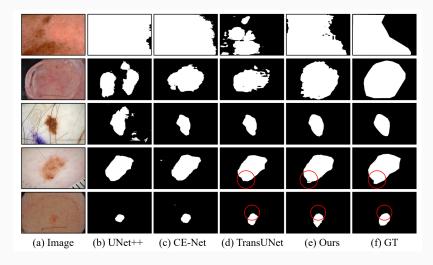
• Boundary-aware Transformers (BAT; Wang et al., 2021) для сегментации поражений кожи, типичная задача визуализации, где нужно добавить какие-то дополнительные априорные распределения



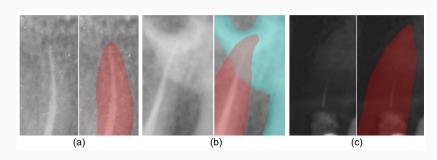
• ВАТ похож на ViT, но добавляет гейт граничного внимания (BAG), который принимает признаки на вход и выдает бинарную карту внимания на уровне патчей, где 1 означает, что патч лежит на неоднозначной границе:



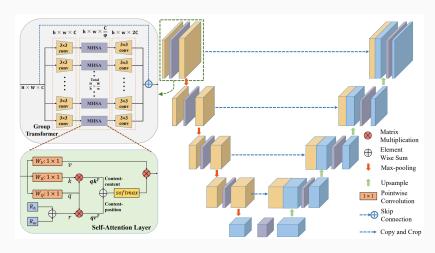
• BAT дает результаты лучше, чем, например, TransUNet:



- Group Transformer Network (GT U-Net; Li et al., 2021): сегментация рентгеновских снимков зубов для эндодонтического лечения
- Рентгеновские снимки часто плохого качества (недодержанные или передержанные), границы размыты, есть наложения...



• GT U-Net сохраняет структуру U-Net, но добавляет Group Transformer:



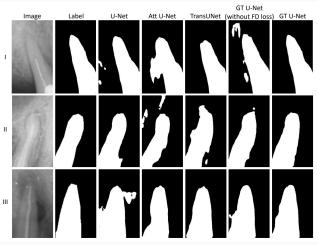
• Интересная часть – shape-sensitive Fourier descriptor: если (x_m,y_m) — координата на границе корня зуба с N пикселями, мы можем сформировать форму границы как комплексное число $z(m)=x_m+jy_m$ и определить дескриптор Фурье как

$$Z(k) = DFT(z(m)) = \frac{1}{N} \sum_{m=0}^{N-1} z(m)e^{-j\frac{2\pi mk}{N}}.$$

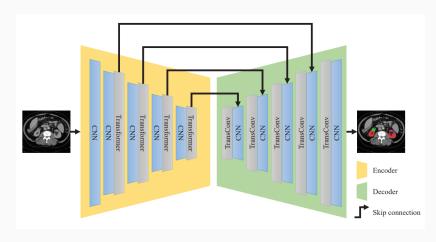
- Это количественное представление замкнутых контуров, независимое от их начальной точки, масштаба, местоположения и вращения
- Поэтому в дополнение к бинарной кросс-энтропии мы можем вычислить разность между дескрипторами Фурье $\Delta Z(k) = \left| Z(k) \hat{Z}(k) \right| \text{ и определить функцию потерь FD как}$

$$L_{\mathrm{FD}} = \mathrm{BCE}(\mathbf{x}, \hat{\mathbf{x}}) \cdot \frac{1}{1 + e^{-\beta \cdot \Delta Z(k)}}.$$

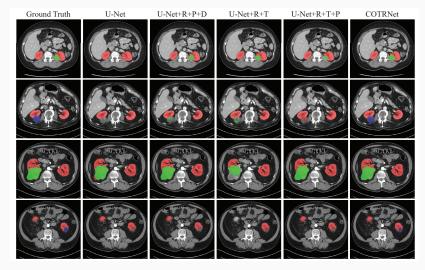
• В результате GT U-Net улучшает результаты сегментации, особенно с функцией потерь FD:



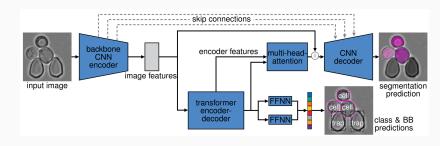
• Сегментация опухолей почек с COTR-Net (Shen et al., 2021): добавим трансформеры внутрь U-Net



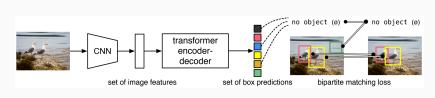
· COTR-Net улучшает сегментацию:

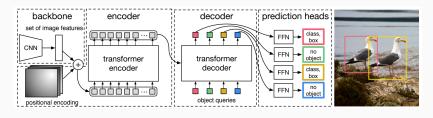


• Сегментация клеток с Cell-DETR (Prangemeier et al., 2020) на основе Detection Transformer (DETR):



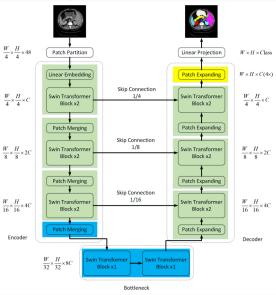
· Сам DETR (Carion et al., 2020) мы уже обсуждали:



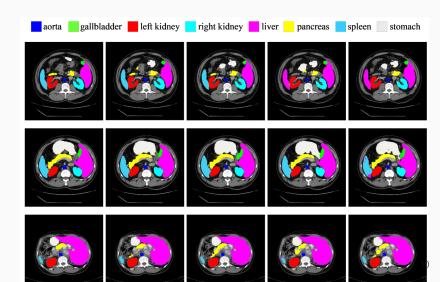


· Карты внимания DETR хорошо разделяют экземпляры:

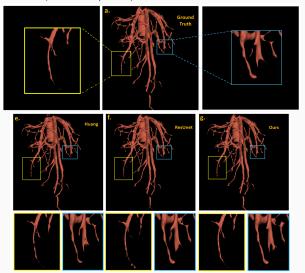
· Swin-UNet (Cao et al., 2021):



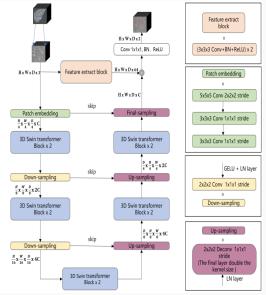
• Дополнительно улучшает сегментацию компьютерных томограмм:



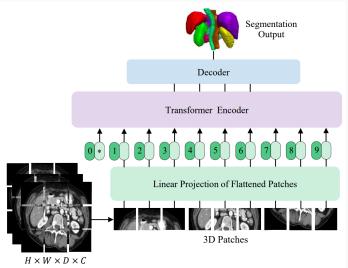
• В 3D: сегментация печеночных сосудов на компьютерных томограммах (Wu et al., 2021)



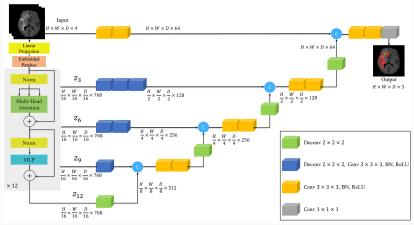
· Архитектура основана на 3D Swin Transformer:



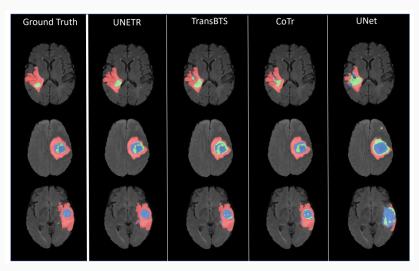
• UNETR (Hatamizadeh et al., 2021): еще одна структура ViT+UNet для 3D сегментации



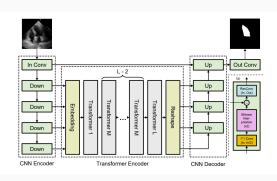
• Представления, произведенные трансформером, объединяются в декодере для обеспечения мелких деталей, в стиле U-Net:



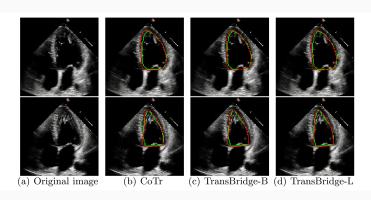
• Результаты улучшаются:



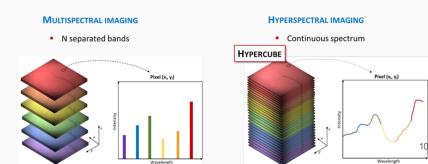
- Transbridge (Deng et al., 2021): сегментация в электрокардиографии
- Трансформер работает как мост между свёрточным кодировщиком и свёрточным декодером



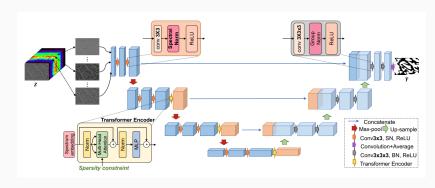
• Улучшает границы сегментации:

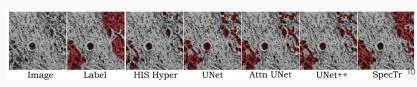


- Более того, можно не ограничиваться видимыми изображениями
- Гиперспектральная съёмка (hyperspectral imaging, HSI) изучает, как широкий спектр света взаимодействует с наблюдаемыми материалами; спектральная информация представлена сотнями узких смежных спектральных полос, гораздо больше каналов, чем просто три основных цвета
- Вход теперь гиперкуб со множеством спектральных полос:

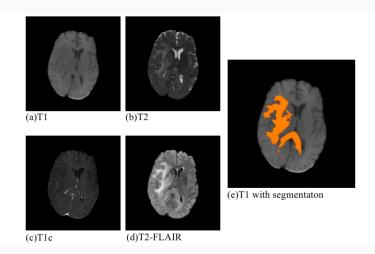


 SpecTr (Yun et al., 2021): U-Net + Transformer для гиперспектральных снимков

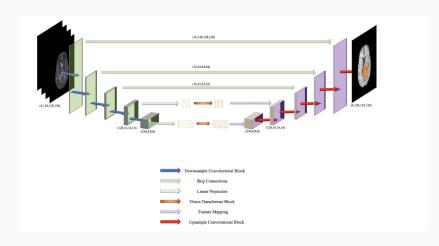




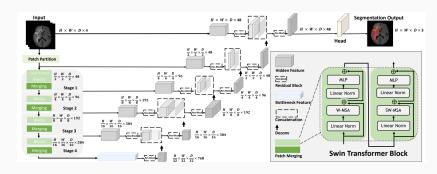
- Другое направление 3D сегментация
- BiTr-Unet (Jia, Shu, 2021): CNN + Transformer для сегментации опухолей мозга на MPT



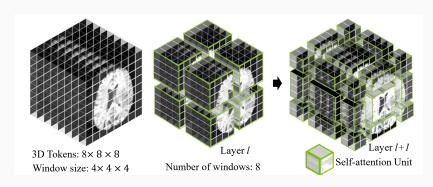
· Снова U-Net-подобная архитектура с блоками ViT:



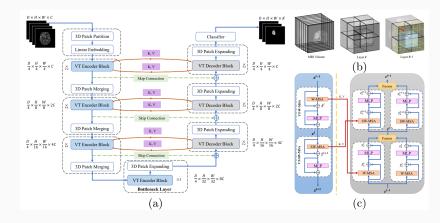
• Swin UNETR: Swin Transformers для семантической сегментации опухолей мозга на МРТ-изображениях



• Swin UNETR адаптирует метод сдвинутых окон к 3D объёмным окнам:



• VT-UNET: Transformer для объёмной сегментации (Peiris et al., 2021)



 VT-UNET: Transformer для объёмной сегментации (Peiris et al., 2021)

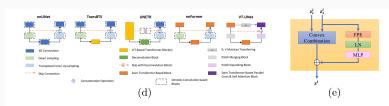
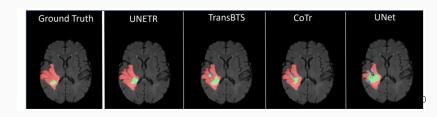


Fig. 2: (a) Illustrates VT-UNet Architecture. Here, k denotes the number of classes. (b) shows visualization of Volumetric Shifted Windows. Consider an MRI volume of size $D \times H \times W$ with D = H = W = 8 for the sake of illustration. Further, let the window size for partitioning the volume be $P \times M \times M$ with P = M = 4. Here, layer l adopts the regular window partition in the first step of Volumetric Transformer(VT) block which results in $2 \times 2 \times 2 = 8$ windows. Inside layer l+1, volumetric windows are shifted by $(\frac{l}{2}, \frac{M}{2}, \frac{M}{2}) = (2, 2, 2)$ tokens. This results in $3 \times 3 \times 3 = 27$ windows. (c) shows VT Encoder-Decoder Structure. (d)Encoder-Decoder structural comparison with other SOTA methods. The proposed VT-UNet architecture has no convolution modules and is purely based on Transformer blocks. (e) Illustrates the structure of the Fusion Module.

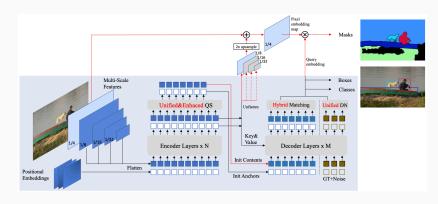
• Есть общие датасеты для сравнения; например, 3D датасет опухолей мозга BraTS 2021 (Baid et al., 2021)

Method	#params	Flops	Dice Score (Avg.)
TransBTS [138]	33 M	333 G	84.99
BiTr-UNet [139]	-	-	86.20
UNETR [35]	102.5 M	193.5 G	84.51
nnFormer [144]	39.7 M	110.7 G	86.56
Swin UNETR [145]	61.98 M	394.84 G	88.97
VT-UNET-T [143]	5.4 M	52 G	86.82
VT-UNET-S [143]	11.8 M	100.8 G	87.00
VT-UNET-B [143]	20.8 M	165 G	88.07



MASK DINO

• Mask DINO (Li et al., 2023): идеи Mask R-CNN можно применить и к детекторам на основе трансформеров



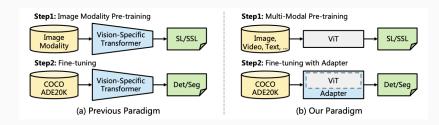
MASK DINO

· Улучшаются результаты на СОСО и ADE20K

Method	Params	Backbone	Backbone Pre-training Dataset	Detection Pre-training Dataset	val w/o TTA w/ TTA	
In	etance se	amentation o	n COCO		W/0 1 1A	
Instance segmentation on COCO AP						
Mask2Former [3]	216M	SwinL	IN-22K-14M	_	50.1	-
Soft Teacher [36]	284M	SwinL	IN-22K-14M	O365	51.9	52.5
SwinV2-G-HTC++ [23]	3.0B	SwinV2-G	IN-22K-ext-70M [23]	O365	53.4	53.7
MasK DINO(Ours)	223M	SwinL	IN-22K-14M	_	52.6	_
MasK DINO(Ours)	223M	SwinL	IN-22K-14M	O365	54.5 (+1.1)	_
Panoptic segmentation on COCO					PQ	
Panoptic SegFormer [19]	-M	SwinL	IN-22K-14M	_	55.8	_
Mask2Former [3]	216M	SwinL	IN-22K-14M	_	57.8	_
MasK DINO (ours)	223M	SwinL	IN-22K-14M		58.4 (+0.6)	_
MasK DINO (ours)	223M	SwinL	IN-22K-14M	O365	59.4 (+1.6)	-
Semantic segmentation on ADE20K					mIoU	
Mask2Former [3]	215M	SwinL	IN-22K-14M	_	56.1	57.3
SeMask-L MSFaPN-Mask2Former [14]	-M	SwinL-FaPN	IN-22K-14M	_	_	58.2
SwinV2-G-UperNet [23]	3.0B	SwinV2-G	IN-22K-ext-70M [23]	_	59.3	59.9
MasK DINO (ours)	223M	SwinL	IN-22K-14M	_	56.6	_
MasK DINO (ours)	223M	SwinL	IN-22K-14M	O365	59.5	60.8 (+0.9)

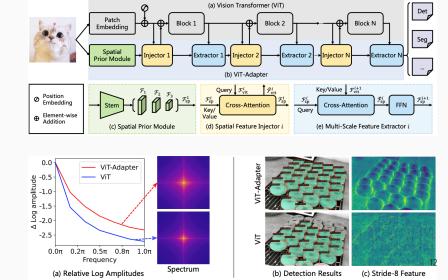
VIT-ADAPTER

· ViT-Adapter (Chen et al., 2023): адаптер без предобучения, чтобы приблизить ViT к Swin для плотного предсказания



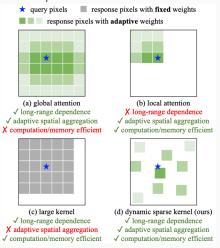
VIT-ADAPTER

· Адаптер позволяет ViT работать с сегментацией



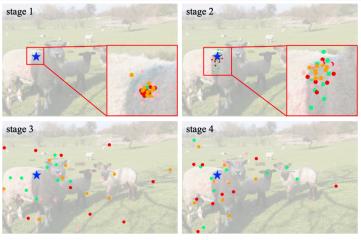
INTERNIMAGE

• CNN не умерли! InternImage (Wang et al., 2023) – новая базовая модель на основе CNN, использующая деформируемые свертки



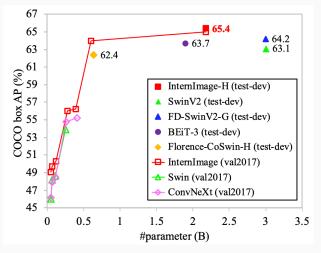
INTERNIMAGE

• Новая идея – иметь многогрупповую структуру, как разные головы внимания: разные группы имеют разные смещения в свертках и действительно получают разную семантику

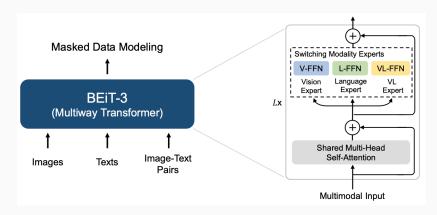


INTERNIMAGE

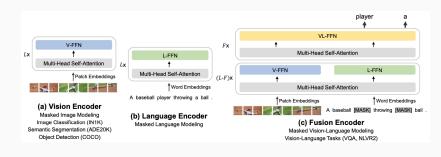
• Хорошо и для распознавания объектов:



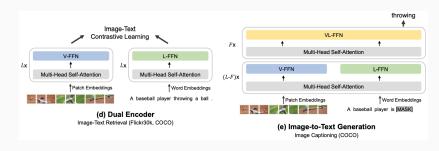
- Еще одна большая область мультимодальные модели; они могут быть очень эффективны для сегментации
- BEiT-3 (Wang et al., 2022): сходятся вместе предобучение языка, визуальные данныы и мультимодальность



• ВЕІТ выполняет маскированное визуально-языковое моделирование во многих модальностях:



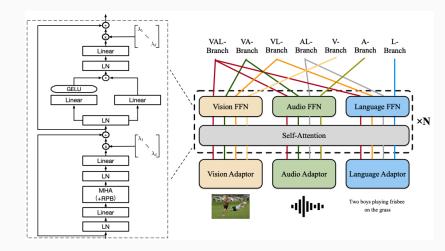
• А также поиск и порождение:



• Улучшил многие результаты (в 2022 году):

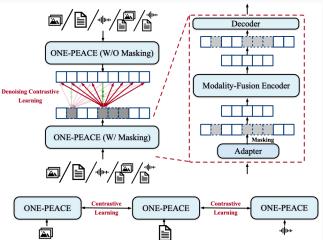
ONE-PEACE

· ONE-PEACE (Wang et al., 2023)



ONE-PEACE

• Задача здесь обычно в том, чтобы изобрести множество задач с self-supervision во всех модальностях; и это хороший момент, чтобы перейти к обсуждению мультимодальных представлений

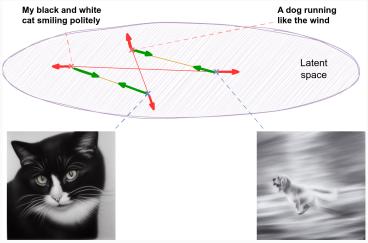


CLIP и BLIP

Мультимодальные латентные пространства

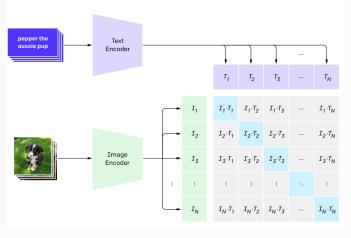
- У нас есть много картинок и текстов, свободно доступных в интернете
- Как использовать текст в паре с изображениями так, чтобы получить хорошее мультимодальное латентное пространство?
- Авторы CLIP пишут, что их первой идеей было обучить свёрточную сеть для изображений и трансформер для текста, чтобы предсказывать подпись к изображению
- Но это не сработало: предсказывать точную подпись очень сложно (практически безнадёжно), и это не совсем то, что нам нужно в этой модели, нам просто нужны хорошие мультимодальные представления

• Контрастивное предобучение (contrastive pretraining): моделируем силы притяжения и отталкивания в совместном латентном пространстве

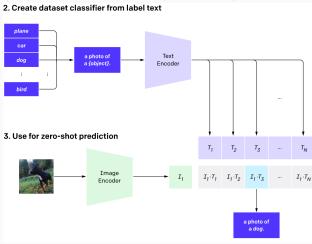


• CLIP (Radford et al., 2021; OpenAI), Contrastive Language—Image Pretraining; использовали пары изображение-текст, которые были просто собраны из интернета:

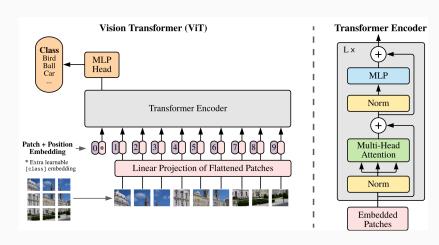
1. Contrastive pre-training



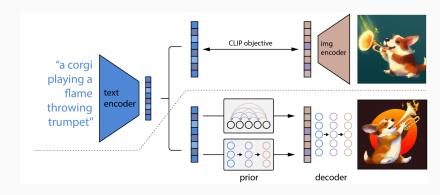
• В итоге работала даже zero-shot классификация – преобразуем метки классов в простые запросы:



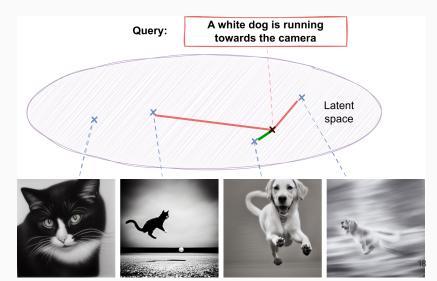
• Кодировщик изображений был ViT (Vision Transformer, Dosovitsky et al., 2020)



• CLIP стал популярным источником совместных представлений; например, DALL-E 2 рисовал картинки в латентном пространстве CLIP:

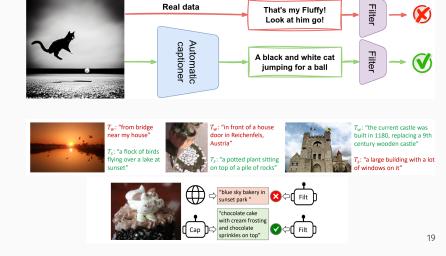


• Основное применение CLIP — это обеспечение информационного поиска и порождающих моделей:

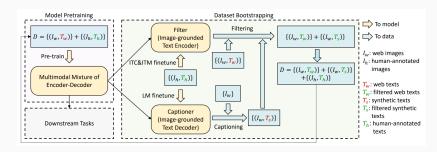


BLIP

• BLIP (Li et al., 2022) – Bootstrapping Language-Image Pretraining; порождаем синтетические подписи и фильтруем их

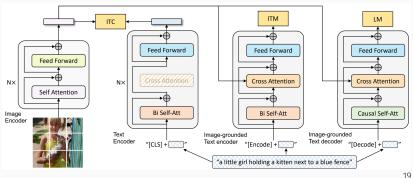


• Структура обучения:



BLIP

• Три разных кодировщика и декодер: ITC – контрастивная функция потерь для изображения и текста (сопоставление представлений изображения и текста), ІТМ – функция потерь на соответствие изображения и текста (различение положительных и отрицательных пар), LM – языковое моделирование (авторегрессивное порождение подписей)



Спасибо!

Спасибо за внимание!

