
БОЛЬШИЕ ЯЗЫКОВЫЕ МОДЕЛИ

Сергей Николенко

СПбГУ − Санкт-Петербург
11 декабря 2025 г.

Random facts:

• 11 декабря в ООН — Международный день гор, а в Аргентине — Национальный день
танго

• 11 декабря 1792 г. начался процесс над Людовиком XIV по делу о госизмене, а 11 декабря
1932 г. вступило в действие отречение от престола Эдуарда VIII

• 11 декабря 1868 г. в ходе Войны тройственного альянса (также известной как
Парагвайская война) произошла битва при Авай, считающаяся самой кровавой в
истории Южной Америки: около 3000 убитых и 600 раненых с парагвайской стороны

• 11 декабря 1925 г. папа Пий XI учредил Праздник Христа Царя, самое молодое
католическое торжество, смысл которого в почитании Христа как Царя Вселенной

• 11 декабря 1972 г. Юджин Сернан и Харрисон Шмитт («Аполлон-17») совершили шестую
и последнюю в XX веке посадку космического корабля на лунную поверхность; Юджин
Сернан стал пока что последним человеком, гулявшим по поверхности Луны

• 11 декабря 2019 г. были объявлены результаты референдума о независимости
Бугенвиля; 98.31% проголосовали за независимость от Папуа — Новой Гвинеи 1

ДООБУЧЕНИЕ LLM

RLHF

• Мы знаем, что обучение с подкреплением (RL) – это раздел
ML, в котором агент ”живёт” в окружающей среде и собирает
данные для обучения по ходу дела

• RLHF (reinforcement learning from human feedback) – это
применение RL для дообучения LLM, где окружающей средой
выступают люди

3

RLHF

• RLHF началось вместе с OpenAI (Christiano et al., 2017)
• Поскольку мы не можем формально определить, чего хотим,

давайте спросим человека: when you see it, you know it
• Но люди не смогут разметить датасет достаточного размера;

поэтому давайте обучим отдельную модель, reward predictor:

4

RLHF

• Человек не может выдать численное значение награды, и
вместо этого они сравнивают пары “действий” — у Christiano
et al. это были короткие последовательности в играх Atari
или действия робота

• Получается задача обучения по pairwise preferences;
датасет — это ӹ = {(ᅼ1, ᅼ2, ᅷ)։}կ։=1, гдеᅼք = ((Ԟք0, Ԑք0), (Ԟք1, Ԑք1), … , (Ԟք,ֆՎ , Ԑք,ֆՎ)) —

последовательности действий, описывающие траекторию в
RL environment, а ᅷ — распределение вероятностей,
показывающее, предпочёл ли пользователь ᅼ1 или ᅼ2, or had
an equal preference (uniform μ).

• Как обучить из этого что-то полезное?

4

RLHF

• Модели Брэдли-Терри! Bradley, Terry (1952): для некоторых
рейтингов ᅭք ∈ ℝ предположим, что̂ԟ(Ԙ ≻ ԙ) = ᅭքᅭք + ᅭօ ;
из этого предположения получается простой и красивый
вариант EM-алгоритма.

• В случае RLHF будем предполагать, чтоᅭ(ᅼք) = Ԕ∑ՐՎՙ=1 ̂֍(֊Վՙ,ռՎՙ),
и тогда можно определить функцию ошибки какℒ = − ∑(ᇐ1,ᇐ2,ᇋ)∈ե (ᅷ(1) log ̂ԟ(ᅼ1 ≻ ᅼ2) + ᅷ(2) log ̂ԟ(ᅼ2 ≻ ᅼ1)) .

4

RLHF

• Может показаться, что мы заменили одну трудную задачу на
другую, но оказывается, что достаточно буквально
нескольких сотен запросов к людям, чтобы обучиться ходить
в MuJoCo, а с тысячами можно побить чистый RL!

• Reward shaping (Wiewiora, 2010): награды дают больше
информации, чем «получилось – не получилось»

• Но у Christiano et al. (2017) был и speciŕcation gaming

4

RLHF

• Общая схема (Steinnon et al., 2020):

5

RLHF

• Общая схема (Ouyang et al., 2022):

6

LMARENA

• https://lmarena.ai/

7

https://lmarena.ai/

LORA И ДРУГИЕ АДАПТЕРЫ

• Другой подход к ŕne-tuning — добавить маленький кусочек
(адаптер) к большой модели и обучить только его; это может
быть параллельная маленькая нейросеть с residual
connection:

8

LORA И ДРУГИЕ АДАПТЕРЫ

• Но часто такие адаптеры основаны на низкоранговых
приближениях (LoRA – Low-Rank Adaptation)ԍ ≈ Ԋԋ , где Ԋ ∈ ℝկ×ֆ, ԋ ∈ ℝֆ×ծ

8

LORA И ДРУГИЕ АДАПТЕРЫ

• Может быть много адаптеров для одной модели, и хранить
надо только их

8

LORA И ДРУГИЕ АДАПТЕРЫ

• Основная проблема в LoRA — как выбрать ранг Ԛ:
• adaptive low-rank adaptation (AdaLoRA; Zhang et al., 2023)

параметризует ΔԌ как настоящее сингулярное разложение,ΔԌ = ԅΛԆ, где Ԋ ∈ ℝկ×ֆ, ԋ ∈ ℝֆ×ծ — ортогональные
матрицы, и Λ = diag(ᅶ1, ᅶ2, … , ᅶֆ); тогда можно посмотреть на
модули сингулярных чисел |ᅶք|;

• sparse low-rank adaptation (SoRA; Ding et al., 2023) замечает, чтоΛ — это “фильтр” для строк и столбцов Ӷ и ӷ, и можно это явно
попробовать записать: ΔԌx = ӷ ⋅ (g ⊙ (Ӷx)));

• allocating low-rank adaptation (ALoRA; Liu et al., 2024) не делает
полноценное SVD, но добавляет диагональную Λ между Ӷ и ӷ
и отдельно оценивает важности отдельных рангов;

8

LORA И ДРУГИЕ АДАПТЕРЫ

• Основная проблема в LoRA — как выбрать ранг Ԛ:
• dynamic search-free LoRA (DyLoRA; Valipour et al., 2023)

сэмплирует ранг Ԛ на каждом шаге, обучает обрезанные Ӷ и ӷ;
• weight-decomposed low-rank adaptation (DoRA; Liu et al., 2024)

раскладывает предобученные веса на модуль и направление,Ԍ = ‖Ԍ‖ · (Ԍ/‖Ԍ‖), и обучает их отдельно; и так далее...

8

INSTRUCTION TUNING

• Наконец, можно просто собрать датасет из необходимых
данных и дообучиться на нём

• Интересный вопрос – откуда взять данные?

9

INSTRUCTION TUNING

• Подходы: P3 (Public Pool of Prompts; Sanh et al., 2022)

9

INSTRUCTION TUNING

• Natural Instructions (Mishra et al., 2022), Super-Natural
Instructions (Wang et al., 2022)

9

СИНТЕТИЧЕСКИЕ ДАННЫЕ ЧЕРЕЗ ДИСТИЛЛЯЦИЮ

• Можно попросить сильную LLM создать данные для обучения
более слабой модели: Alpaca (Taori et al., 2023), Vicuna (Chiang
et al., 2023)

10

СИНТЕТИЧЕСКИЕ ДАННЫЕ ЧЕРЕЗ ДИСТИЛЛЯЦИЮ

• Много таких подходов (Liu et al., 2024):
• Orca (Mukherjee et al., 2022) и Orca 2 (Mitra et al., 2023),

дистиллированные из GPT-4 для улучшения рассуждений и
планирования в более лёгких моделях;

• Unnatural Instructions (Honovich et al., 2023), продолжающий
Super-Natural Instructions (Wang et al., 2022): берём три примера
из датасета и просим сильную LLM придумать четвёртый;

• Baize (Conover et al., 2023), корпус разговоров с ChatGPT с
разными репликами; он использовался для моделей Dolly;

• масса domain-speciŕc датасетов: WizardCoder (Luo et al., 2024),
WaveCoder (Yu et al., 2023), Magicoder (Wei et al., 2023) для
порождения программного кода, WizardMath (Luo et al., 2023),
MetaMath (Yu et al., 2023), Xwin-Math (Li et al., 2024) для
математики и т.д.

11

СИНТЕТИЧЕСКИЕ ДАННЫЕ ЧЕРЕЗ ДИСТИЛЛЯЦИЮ

• Можно сделать и curriculum learning (Yue et al., 2024):

12

СИНТЕТИЧЕСКИЕ ДАННЫЕ ЧЕРЕЗ ДИСТИЛЛЯЦИЮ

• Но есть и критика; всё-таки дистилляция – это не магия
(Gudibande et al., 2023):

13

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• Self-Instruct (Wang et al., 2023): LLM сама порождает
инструкции, затем примеры, затем ŕne-tuning; но не
рекурсивно

• Через Self-Instruct авторы подняли GPT-3 почти до уровня
InstructGPT без ручной разметки

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• Пример рекурсивного подхода: Reinforced Self-Training (ReST)
от DeepMind (Gulcehre et al., 2023)

• На каждом шаге порождаем датасет, затем обучаем

• Это естественным образом приводит к...

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• ...конечно же, EM-алгоритму! Singh et al. (2024) – ReSTEM: LLM
пытается оптимизировать метрику по возможным выходам
языковой модели. Давайте применим EM:

• E-шаг (Generate): LLM порождает несколько примеров для
каждого входа, мы их перевзвешиваем и собираем обучающий
датасет

• M-шаг (Improve): LLM обучается (SFT) на этом обучающем
датасете, и она используется на следующем E-шаге

• Давайте разберёмся подробнее...

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• Пусть для входа (контекста) x и выхода LLM y мы определили
награду ԡ(x, y) так, что сам RL lossℒRL(ᅲ) = ඩx∼ե [ඩy∼֋ᅲ(y∣x) [ԡ(x, y)]] .

• Чтобы оптимизировать ℒRL напрямую, нужно много раз
сэмплировать из LLM, это дорого. Давайте определим
бинарную целевую переменную Ԅ (оценку оптимальности):ԟ (Ԅ = 1|x, y) ∝ ԕ(ԡ(x, y)) для некоторой неубывающей
функции ԕ

• Цель — максимизировать вероятность получить Ԅ
log ԟ (Ԅ = 1|x) = log ∑

y
ԟᅲ (y ∣ x) ԟ (Ԅ = 1|x, y) ,

но просуммировать по y напрямую невозможно. Тут-то и
пригодится EM...

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• Запишем вариационную нижнюю оценку

log ԟ (Ԅ = 1|x) == log ඩ֌(y∣x) [ԟ (Ԅ = 1|x, y) ԟᅲ (y ∣ x)Ԡ (y ∣ x)] ≥≥ ඩ֌(y∣x) [log ԟ (Ԅ = 1|x, y) ԟᅲ (y ∣ x)Ԡ (y ∣ x)] == ඩ֌(y∣x) [log ԟ (Ԅ = 1|x, y)] − KL (Ԡ (y ∣ x) ‖ԟᅲ (y ∣ x)) == ℒ(ԟᅲ, Ԡ).
• Нам нужно на каждой итерации EM-алгоритма улучшать

оценку ℒ(ԟᅲ, Ԡ):

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• EM-схема
• E-шаг: Ԡ(֏+1) = arg max֌ ℒ(ԟᅲ(ՙ) , Ԡ); здесь можно записатьℒ(ԟᅲ(ՙ) , Ԡ) = −KL (Ԡ (y ∣ x) ‖Ԡ∗ (y|x)) , гдеԠ∗ (y|x) = ԟ (Ԅ = 1|x, y) ԟᅲ(ՙ) (y|x) ,

а значит, это просто перевзвешивание сэмплов из модели на
основе того, насколько вероятно им получить высокую награду;

• M-шаг: оптимизируемᅲ(֏+1) = arg maxᅲ ℒ(ԟᅲ, Ԡ(֏+1)) == arg minᅲ KL (Ԡ(֏+1)(y|x)‖ԟᅲ (y ∣ x)) == arg minᅲ ∑
y

−Ԡ(֏+1)(y|x) log ԟᅲ (y ∣ x) ,
то есть это просто максимизация взвешенного логарифма
правдоподобия.

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• А если упростить до неотрицательных наград с ԕ = Ԙԓ, тоԟ (Ԅ = 1|x, y) ∝ ԡ(x, y), т.е. Ԡ(֏+1)(y|x) ∝ ԡ(x, y)ԟᅲ(ՙ) (y|x), и
М-шаг превращается вᅲ(֏+1) = arg maxᅲඩx∼ե [ඩy∼֋ᅲ(ՙ) (y|x) [ԡ(x, y) log ԟᅲ (y ∣ x)]] .

• Отсюда и получается алгоритм Singh et al. (2024):

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• И действительно, в результате модели существенно
улучшаются

• Здесь открытые модели семейства PaLM оказываются
наравне с GPT-4 в математике и с WizardCoder в
программировании:

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• Много итераций EM не нужно, но 2-3 помогают:

14

BOOTSTRAPPING: КАК ОБУЧИТЬ САМОГО СЕБЯ

• Self-Taught Reasoner (STaR; Zelikman et al., 2022) порождает
объяснения (step by step), фильтрует их и дообучает на
отфильтрованных;

• Rejection Fine-Tuning (RFT; Yuan et al., 2023) улучшает фильтр
специально для математических задач;

• Self-Taught Optimizer (STOP; Zelikman et al., 2024) делает
следующий мета-шаг: рекурсивно улучшает код, который
применяет LM, чтобы улучшить программный код, т.е.
improver запускается на самом себе

14

ВЫВОДЫ ПО ДООБУЧЕНИЮ

• Есть много методов дообучения:
• маленькие адаптеры, например LoRA;
• instruction tuning;
• дообучение на синтетических данных, в том числе

bootstrapping...

• Эти исследования можно вести и дальше: мы не можем
двигать фронтир, но есть открытые модели, доступные для
дообучения, например Llama

15

РАСШИРЕНИЕ ДЛИНЫ КОНТЕКСТА

SPARSE ATTENTION

• Как расширять контекст?
• Longformer (Beltagy et al., 2020): расширение окна внимания

при помощи нескольких трюков, включая dilated attention и
global attention

17

SPARSE ATTENTION

• Dilated attention: можно делать разреженное внимание, как,
например, разреженные свёртки

• Как было в WaveNet:

• Global attention: токены [CLS] в BERT были очень полезны,
надо иметь возможность выражать глобальные признаки

17

SPARSE ATTENTION

• Sparse Transformers (Child et al., 2019): разреженное
внимание действительно обучается в большинстве слоёв

• Зафиксируем это: пусть у каждой головы Ԙ есть подмножествоӶք токенов для внимания, и можно дойти до любого другого
токена за ԟ шагов, то есть размер Ӷք порядка Ԅ(ԁ1/֋)

• Если делать регулярный паттерн, можно устроить так:

17

SPARSE ATTENTION

• Big Bird (Zaheer et al., 2020): те же трюки плюс ещё несколько
случайных позиций для весов внимания, которые добавляют
выразительности

• Они рассматривают внимание как случайный граф и
используют модель Watts–Strogatz (каждая вершина имеет
связи с ближайшей окрестностью + случайные связи) с
хорошим балансом между длиной кратчайших путей и
локальным контекстом

17

НИЗКОРАНГОВЫЕ РАЗЛОЖЕНИЯ

• Linformer (Wang et al., 2020): матрицы внимания имеют малый
ранг, и это можно использовать для оптимизации

• То есть мы опять возвращаемся к той же идее

18

НИЗКОРАНГОВЫЕ РАЗЛОЖЕНИЯ

• Linformer проецирует матрицы ԋ и Ԁ , уменьшая ранг

headք = softmax (1√ԓֆ ԆԌ ղք (ӺքԀԌ լք)⊤) ⋅ (ӻքԋ Ԍ շք)

18

CHUNKED ATTENTION

• А что если изменить саму архитектуру внимания?
• GAU (Gated Attention Unit; Hua et al., 2022) – вариант GRU,

применяем два преобразования ко входу и умножаем
покомпонентно (gating), и эту идею скрещиваем с
self-attention

19

CHUNKED ATTENTION

• Это всё ещё квадратично, но теперь можно разбить на куски!
• Разбиваем на chunks, внутри каждого chunk делаем

квадратичное внимание, а между chunks – линейное

19

CHUNKED ATTENTION

• Следующий логичный шаг – MEGA (Moving Average Equipped
Gated Attention; Ma et al. 2022)

• Начнём с идеи экспоненциального скользящего среднего
(EMA), которая нам уже хорошо знакома и появляется
постоянно

19

CHUNKED ATTENTION

• Теперь применим это к self-attention: вход ԍ ∈ ℝխ×տ сначала
расширяется до ԓ × ℎ матрицы u(օ)֏ = ᅬօx֏,օ

• Затем применяем EMA к матрице Ԋ ; damped EMA:

h(օ)֏ = ᅫօ ⊙ u(օ)֏ + (1 − ᅫօ ⊙ ᅮօ) ⊙ h(օ)֏−1
• А потом проецируем обратно: y֏,օ = ᅱ⊤օ h(օ)֏

19

CHUNKED ATTENTION

• На этом этапе мы ещё ничего не сделали с квадратичной
сложностью, зато внесли более сильный position bias

• Давайте теперь разобьём на chunks, и связи между ними
будем поддерживать через EMA:

• Это всё приводит нас к интересным мыслям...

19

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Давайте вернёмся к формуле самовнимания:ԏ = softmax (1√ԓֆ ԆԀ⊤) ԋ .
• Здесь q⊤ք kօ — это мера похожести между qք и kօ
• Было бы хорошо, если бы softmax не было; тогда можно

было бы переставить скобки:(ԆԀ⊤) ԋ = Ԇ (Ԁ⊤ԋ) ,
и теперь все участвующие матрицы имеют размер ԁ × ԓ, а неԁ × ԁ

• Но softmax есть, и просто удалить его нельзя; а что если...

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Kernel trick: рассмотрим линейный классификатор

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Для квадратичных поверхностей он не работает:

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Было бы хорошо построить квадратичную поверхностьԦ0 + Ԧ1ԧ1 + Ԧ2ԧ2 + Ԧ3ԧ21 + Ԧ4ԧ1ԧ2 + Ԧ5ԧ22 = 0

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Kernel trick: давайте рассмотрим отображение

x = (ԧ1 ԧ2)⊤ ⟶ ᅿ(x) = (ԧ1 ԧ2 ԧ21 ԧ1ԧ2 ԧ22)⊤ ,
точнее, ᅿ(x) = (√2ԧ1 √2ԧ2 ԧ21 √2ԧ1ԧ2 ԧ22)⊤

• Тогдаᅿ(x)⊤ᅿ(x′) == 2ԧ1ԧ′1 + 2ԧ2ԧ′2 + ԧ21ԧ′22 + 2ԧ1ԧ2ԧ′1ԧ′2 + ԧ22ԧ′22 == 2x⊤x′ + (ԧ1ԧ′1 + ԧ2ԧ′2)2 == 2x⊤x′ + (x⊤x′)2 == (x⊤x′ + 1)2 − 1 = Ԛ(x, x′).
20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Теперь мы можем строить линейную поверхность в
пространстве ᅿ(x), и она станет квадратичной в x

• Так можно и, например, локальные признаки использовать и
следовать за точками

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• А теперь вернёмся к самовниманию:ᅫքօ = exp(q⊤ք kօ)∑խև=1 exp(q⊤ք kև) , zք = խ∑օ=1 ᅫքօvօ = խ∑օ=1 exp(q⊤ք kօ)∑խև=1 exp(q⊤ք kև)vօ
• Если мы сможем превратить это вᅫքօ = ᅿ(qք)⊤ᅿ(kօ)∑խև=1 ᅿ(qք)⊤ᅿ(kև) ,

то можно будет опять же переставить скобочки:

zք = խ∑օ=1 ᅫքօvօ = խ∑օ=1 ᅿ(kօ)⊤ᅿ(qք)∑խև=1 ᅿ(kև)⊤ᅿ(qք)vօ = (∑խօ=1 vօᅿ(kօ)⊤) ᅿ(qք)(∑խև=1 ᅿ(kև)⊤) ᅿ(qք) .
20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• То есть структура того, что мы делаем, выглядит так:

zք = խ∑օ=1 ᅫքօvօ = խ∑օ=1 ᅿ(kօ)⊤ᅿ(qք)∑խև=1 ᅿ(kև)⊤ᅿ(qք)vօ = (∑խօ=1 vօᅿ(kօ)⊤) ᅿ(qք)(∑խև=1 ᅿ(kև)⊤) ᅿ(qք)

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• И если ввести новые обозначения, получится

zք = Sᅿ(q֏)
u⊤ᅿ(q֏) , где S = ∑խօ=1 vօᅿ(kօ)⊤, u = ∑խև=1 ᅿ(kև)

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• А если мы говорим об авторегрессионной модели (типа GPT),
то S֏ и u֏ можно обновлять рекурсивно:

z֏ = S֏ᅿ(q֏)
u⊤֏ ᅿ(q֏) , где S֏ = ∑֏օ=1 vօᅿ(kօ)⊤, u֏ = ∑֏և=1 ᅿ(kև),

то есть

S֏ = S֏−1 + v֏ᅿ(k֏)⊤, u֏ = u֏−1 + ᅿ(k֏)
• Получились почти что рекуррентные сети! Матричное

скрытое состояние S֏ и векторное u֏, обновления вдоль
входной последовательности в случае авторегрессионного
порождения

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Это в точности идея Linear Transformer (Katharopoulos et al.,
2020): упрощение self-attention через матричное скрытое
состояние

• Более того, на практике u֏ скорее мешает (Schlag et al., 2021;
Mao, 2022), а ᅿ можно принять тождественным, и тогда
получатся в точности рекуррентные сети:

S֏ = S֏−1 + v֏k⊤֏ , o֏ = S֏q֏
• Эта идея, конечно, открыла целое направление

исследований...

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• ...уже довольно большое направление (Yang et al., 2024):

Model Recurrence Memory readout

Linear attention S֏ = S֏−1 + v֏k⊤֏ o֏ = S֏q֏
+ kernel S֏ = S֏−1 + v֏ᅿ(k֏)⊤ o֏ = S֏ᅿ(q֏)
+ norm S֏ = S֏−1 + v֏ᅿ(k֏)⊤, u֏ = u֏−1 + ᅿ(k֏) o֏ = S֏ᅿ(q֏)/(u⊤֏ ᅿ(q֏))

DeltaNet S֏ = S֏−1(Ӿ − ᅬ֏k֏k⊤֏) + ᅬ֏v֏k⊤֏ o֏ = S֏q֏
Gated RFA S֏ = Ԗ֏S֏−1 + (1 − Ԗ֏)v֏k⊤֏ , u֏ = Ԗ֏u֏−1 + (1 − Ԗ֏)k֏ o֏ = S֏q֏/(u⊤֏ q֏)
S4 S֏ = S֏−1 ⊙ exp(−(ᅫ1⊤) ⊙ exp(A)) + B ⊙ (v֏1⊤) o֏ = (S֏ ⊙ C)1 + d ⊙ v֏
DFW S֏ = S֏−1 ⊙ (ᅬ֏ᅫ⊤֏) + v֏k⊤֏ o֏ = S֏q֏
RetNet S֏ = ᅭS֏−1 + v֏k⊤֏ o֏ = S֏q֏
Mamba S֏ = S֏−1 ⊙ exp(−(ᅫ֏1⊤) ⊙ exp(A)) + (ᅫ֏ ⊙ v֏)k⊤֏ o֏ = S֏q֏ + d ⊙ v֏
GLA S֏ = S֏−1 ⊙ (1ᅫ⊤֏) + v֏k⊤֏ = S֏−1Diag(ᅫ֏) + v֏k⊤֏ o֏ = S֏q֏
RWKV-6 S֏ = S֏−1Diag(ᅫ֏) + v֏k⊤֏ o֏ = (S֏−1 + (d ⊙ v֏)k⊤֏)q֏
HGRN-2 S֏ = S֏−1Diag(ᅫ֏) + v֏(1 − ᅫ֏)⊤ o֏ = S֏q֏
mLSTM S֏ = ԕ֏S֏−1 + Ԙ֏v֏k⊤֏ , u֏ = ԕ֏u֏−1 + Ԙ֏k֏ o֏ = S֏q֏/ max(1, |u⊤֏ q֏|)
Mamba-2 S֏ = ᅭ֏S֏−1 + v֏k⊤֏ o֏ = S֏q֏

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Главный его представитель – Mamba (Gu, Dao, 2024)
• State space model: модель в виде динамической системы

ḣ(ԣ) = Ah(ԣ) + Bx(ԣ), o(ԣ) = Ch(ԣ) + Dx(ԣ).

• Чтобы работало, её нужно дискретизовать:

h(ԣ + Δ) = ԔΔAℎ(ԣ) + (∫Δ0 ԔAᇑdᅽ) B(ԣ).
20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• К SSM можно добавить долгосрочную память в виде матриц
HiPPO (high-order polynomial projection operators; Gu et al.,
2020): сжимаем историю функции ԕ≤֏, приближая её
многочленами высокого порядка

• Смысл HiPPO в том, что эти приближения можно делать
инкрементально, записав диффур на коэффициенты
многочлена ̇c(ԣ) = A(ԣ)c(ԣ) + B(ԣ)ԕ(ԣ);

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• И есть буквально готовые матрицы̇c(ԣ) = −1ԣ Ac(ԣ) + 1ԣ Bԕ(ԣ), cֆ+1 = (1 − 1ԚA) cֆ + 1ԚBԕֆ,
Ӷ։ֆ = ⎧{{⎨{{⎩

√(2ԝ + 1)(2Ԛ + 1), ԝ > Ԛ,ԝ + 1, ԝ = Ԛ,0, ԝ < Ԛ,
например,

A = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0√3 2 0 0 0√5 √3 ⋅ 5 3 0 0√7 √3 ⋅ 7 √5 ⋅ 7 4 03 3√3 3√5 3√7 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• HiPPO можно подставить в RNN, они будут производить
хорошее представление всей истории скрытых состояний

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Selective scan (Gu, Dao, 2024) – это расширение этого подхода,
в котором B, C и Δ (дискретизация) могут зависеть от x֏

• Ну и всё вместе, ещё и с очень эффективными алгоритмами
обучения – это Mamba

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Mamba появилась в декабре 2023, и уже есть:
• Vision Mamba (ViM; Zhu et al., 2024), аналог ViT на Mamba blocks
• VMamba (Liu et al., 2024) – комбинация CNN и Mamba;
• U-Mamba (Ma et al., 2024) – использует Mamba blocks в

U-Net-подобной архитектуре для медицинской сегментации,
новый блок CNN-SSM;

• SegMamba (Xing et al., 2024) – 3D сегментация;
• Video Vision Mamba (ViViM; Yang et al., 2024) – сегментация в

видео;
• MambaMorph (Guo et al., 2024) – обучает соответствие между КТ

и МРТ снимками;
• MoE-Mamba (Pioro et al., 2024) – добавляет в Mamba идею

mixture of experts (MoE); это уже отдельный разговор.

• Очень много всего очень быстро появилось, буквально за
год...

20

ВОЗВРАЩЕНИЕ РЕКУРРЕНТНЫХ СЕТЕЙ

• Ну конечно, я вас обманул – все эти статьи появились за
месяц, в январе 2024!

• Сейчас статей на основе Mamba уже сотни; обзор Qu et al.
(October 2024) – 244 ссылки, большинство из последнего года

20

NEEDLE IN A HAYSTACK

• А как оценивать? Little Retrieval Test:

21

NEEDLE IN A HAYSTACK

• Needle in a haystack (Kamradt, 2023):
• ”стог сена” – это осмысленный текст (эссе Пола Грэма, 200К

токенов плюс повторы),
• ”иголка” – некое утверждение вроде ”The best thing to do in San

Francisco is eat a sandwich and sit in Dolores Park on a sunny day”

21

NEEDLE IN A HAYSTACK

• У GPT-4 к концу 128К токенов контекста начинаются с этим
проблемы:

21

NEEDLE IN A HAYSTACK

• Claude 2.1 в ноябре 2023:

21

NEEDLE IN A HAYSTACK

• Gemini 1.5 Pro (февраль 2024) уже гораздо лучше:

21

NEEDLE IN A HAYSTACK

• А с Claude 3 Opus вообще интересная история вышла – когда
ему предложили тест ”needle in a haystack”, вот что он сказал:

Here is the most relevant sentence in the documents: “The most
delicious pizza topping combination is ŕgs, prosciutto, and goat cheese,
as determined by the International Pizza Connoisseurs Association.”
However, this sentence seems very out of place and unrelated to the
rest of the content in the documents, which are about programming
languages, startups, and ŕnding work you love. I suspect this pizza
topping “fact” may have been inserted as a joke or to test if I was
paying attention, since it does not ŕt with the other topics at all. The
documents do not contain any other information about pizza toppings.

• Но всё это по сути retrieval – можно ли сделать что-то более
интересное?

21

NEEDLE IN A HAYSTACK

• Можно! MTOB – machine translation from one book:

21

NEEDLE IN A HAYSTACK

• Это уже куда более сложная задача, но результаты всё равно
есть:

21

NEEDLE IN A HAYSTACK

• Любопытно, кстати, что результаты такие ”корявые”

21

NEEDLE IN A HAYSTACK

• Gemini 1.5 Pro уже справлялся почти на человеческом уровне:

• А сейчас, кажется, MTOB уже насытился, в последних system
cards его нет

21

ВЫВОДЫ ПО КОНТЕКСТУ

• Расширение контекста – это важное направление, и здесь
внезапно снова появляются и рекуррентные сети, и SVD, и
SSM, и много других идей

• Здесь последнее слово ещё далеко не сказано… но есть и
способ обрабатывать много внешней информации, не
расширяя контекст

22

RAG

RAG

• LLM – большие модели, и они знают многое; но не всё, и по
определению многого знать не могут

24

RAG

• Предположим, что мы хотим дать модели возможность искать
ответ

• Это приводит к примерно такой схеме, и нам нужно её чем-то
наполнить:

24

RAG

• RAG – retrieval-augmented generation:

24

RAG

• Yue et al. (2023): DISC-LawLLM, RAG для юридических услуг,
который умеет искать и читать законы и прецеденты

• Xiong et al. (2024): Medical Information Retrieval-Augmented
Generation Evaluation (MIRAGE) ищет медицинские статьи и
отчёты об исследованиях

• Balaguer et al. (2024): сравнение разных RAG и LLM ŕne-tuning
подходов к сельскому хозяйству, где нужно читать много
документов и отвечать на вопросы вроде “What is the best
time to plant trees and shrubs in Arkansas?”

• Suresh et al. (2024): пример конкретного решения на основе
RAG – работа с документами о БАК

24

RAG

• Первое направление: давайте сделаем RAG более
”агентным”, разрешим модели активно и итеративно
переформулировывать запросы

24

RAG

• Shao et al. (2023): используем выход одного раунда RAG как
вход для следующего раунда

24

RAG

• Asai et al. (2023):

24

RAG

• CRAG (Corrective RAG; Yan et al., 2024): отдельный оценщик
выданных документов

24

RAG

• Adaptive RAG (Jeong et al., 2024): обучает дополнительный
классификатор, который выбирает правильный подход –
нужен ли RAG вообще, нужно ли запускать его один раз или
итеративно много раз

24

RAG

• Ещё одно направление улучшений – умное
переранжирование результатов выдачи (Gao et al., 2023,
Blagojevich, 2023)

• Это, кстати, и наоборот работает: LLM может улучшать поиск,
помогая переранжировать (Ma et al., 2023, Peng et al., 2023)

24

RAG

• Ke et al. (2024): отдельная seq2seq модель выбирает из
документов конкретные части, более интересные для LLM

24

RAG

• Иерархические подходы: RAPTOR (Recursive Abstractive
Processing for Tree-Organized Retrieval; Sarthi et al., 2024), где
LLM рекурсивно суммаризирует длинные тексты

24

RAG

• А потом сам поиск можно запускать на этом дереве
аннотаций, выдавая более глобальный контекст для LLM
(который сам по себе не влез бы)

24

RAG

• Wang et al. (2024): Specialist LLM отвечает на вопросы по
документам, Generalist LLM обобщает черновики от specialist
LLMs

24

RAG

• Связанный подход — R[e]ALM (Retrieval-Augmented Language
Model; Guu et al., 2020): можно вставить поиск прямо в
предсказание токенов; это тоже продолжается, но не будем
сейчас (Borgeaud et al., 2022, Lin et al., 2024)

24

RAG

• RETRO (Retrieval-Enhanced Transformer; DeepMind, Borgeaud et
al., 2022) добавляет поиск прямо в декодер трансформера:

24

RAG

• RA-DIT (Retrieval-Augmented Dual Instruction Tuning; FAIR, Lin
et al., 2024) использует supervised ŕne-tuning, чтобы улучшить
использование результатов поиска:

24

RAG

• Проблема RAG: Lost in the Middle (Liu et al., 2024)

24

RAG

• А главное – полученные знания неструктурированы, и
задачи типа ”иголка в стоге сена” здесь не помогут, они не
про творческую обработку выдачи поиска

24

RAG

• Графы знаний (knowledge graphs) – хорошо развитая область
(Hogan et al., 2022; Ji et al., 2021; Heist et al., 2020; Yan et al.,
2018), но кажется, что их можно было бы использовать чаще

24

RAG

• Есть масса уже готовых графов знаний
• Wikidata (Vrandečić, Krötzsch, 2014): часть Wiki-проекта, более

110M единиц данных
• DBpedia переводит Wikipedia (инфобоксы в основном) в

граф знаний, 220M entities и 1.45B triples
• ConceptNet (Speer et al., 2017): commonsense knowledge и

определения слов, там есть Wiktionary, но им дело не
ограничивается

24

RAG

• Графы знаний использовались для улучшения pretext tasks
• Семейство LLM от Baidu ERNIE (Sun et al., 2019, Sun et al., 2020,

Xiao et al., 2020, Sun et al., 2021) с этого начиналось:

24

RAG

• И потом это продолжалось в следующих версиях ERNIE (Sun
et al., 2021):

24

RAG

• JointLK (Sun et al., 2022) вводит в трансформер внимание,
специально адаптированное для графов:

24

RAG

• Wang et al. (2023): chain-of-knowledge prompting

24

RAG

• Peng et al. (2024): если искать структурированные триплеты,
ответы становятся точнее

24

RAG

• Для самого поиска можно использовать GNN; например,
QA-GNN (Yasunaga et al., 2021)

24

RAG

• Luo et al. (2024): reasoning on graphs (RoG)

24

RAG

• Luo et al. (2024): reasoning on graphs (RoG)

24

RAG

• Можно и наоборот, строить графы знаний через LLM: COMET
(Bosselut et al., 2019) использовал GPT-2, чтобы выводить
новые триплеты, BertNet (Hao et al., 2022) начинает с
определения отношения и нескольких примеров

24

ВЫВОДЫ ПО RAG

• Никакого контекста не хватит на весь интернет, искать всё
равно будет нужно

• RAG — одно из важнейших направлений использования
дополнительных инструментов для LLM (хотя есть и другие,
но об этом не сегодня)

• Есть много разных подходов, но, кстати, и самый простой
тоже работает хорошо: In-context RALM (Ram et al., 2023)
просто берёт все найденные документы и добавляет их к
запросу для LLM, и тоже всё работает

25

СПАСИБО!

Спасибо за внимание!

26

	Дообучение LLM
	Расширение длины контекста
	RAG

