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BART, Bayesian Additive Regression Trees — является непараметрическим методом, который 

объединяет в себе лучшие черты древесных ансамблей и байесовского подхода: 

выразительность и оценку неопределенности.

Если кратко, то идея очень простая:

1. Задаем априорное распределение на случайном лесе, то есть распределение, из которого 

можно генерировать леса, совместимые с форматом наших данных

2. По имеющейся обучающей выборке считаем апостериорное распределение, из которого 

можно генерировать леса, описывающие наши данные

3. Прогоняем интересующие нас данные через апостериорные леса, получая апостериорное 

распределение предсказаний

Bayesian Additive Regression Trees



𝑌𝑖 = 𝑓 𝑋𝑖, 𝑍 + ℰ𝑖 , ℰ𝑖 ∼ 𝒩 0, 𝜎2 ,

𝑓 𝑥, 𝑧 = 𝑔 𝑥, 𝑧, 𝑇1, 𝑀1 + 𝑔 𝑥, 𝑧, 𝑇2, 𝑀2 +⋯+ 𝑔 𝑥, 𝑧, 𝑇𝑚, 𝑀𝑚 .

Здесь 𝑔 это функция, которая выдает значение дерева на данных, 𝑇ℎ описывает структуру 

дерева ℎ, а 𝑀ℎ = 𝜇ℎ1, … , 𝜇ℎ𝑏ℎ  описывает оценки средних в листьях дерева.

Если мы считаем 𝑚 фиксированным, то для проведения байесовского вывода нам нужно 

задать:

● априорное распределение на 𝑇

● априорное распределение на 𝑀

● априорное распределение на 𝜎2

Более формально



Априорное распределение на одном дереве состоит из трех частей:

● Вероятность того, что вершина на глубине 𝑑 не является листом. Обычно берут в виде 

𝛼

1+𝑑 𝛽 ⋅ [мы можем разделиться на две вершины], 𝛼 ∈ 0, 1 , 𝛽 > 0

● Распределение на множестве переменных, по которому будет проводиться разделение в 

данной вершине. Обычно берут равномерное.

● Распределение значения переменной, в котором будет проводиться разделение. Обычно 

берут равномерное на значениях из данных

Априорное распределение на 𝑇



Для того, чтобы задать априорное распределение на 𝑀, делают следующее:

1. Стандартизируют переменную 𝑌, чтобы ее значения были между −0.5 и 0.5

2. Задают априорное распределение на 𝜇𝑖 ∼ 𝒩 0,
0.5

𝑘 𝑚

2
. В этом случае сумма 𝑚 

независимых деревьев будет иметь распределение 𝒩 0,
0.5

𝑘

2
, которое накрывает 

интервал −0.5,0.5 с большой вероятностью, которую можно выбирать за счет 𝑘

Априорное распределение на 𝑀



Для того, чтобы задать априорное распределение на 𝜎, делают следующее:

1. Считают 𝑅𝑆𝐸 =
1

𝑛
σ𝑖 𝑒𝑖

2 линейной регрессии (𝑒𝑖 это остатки)

2. Задают на 𝜎 распределение Inv-Gamma так, чтобы оно было меньше 𝑅𝑆𝐸 с большой 

вероятностью, например, 90%.

Априорное распределение на 𝜎



Как это часто бывает со сложными моделями, получить апостериорное распределение 

аналитически невозможно.

Вместо этого используют метод Монте-Карло на марковских цепях (MCMC), чтобы 

сгенерировать достаточно большую выборку из апостериорного распределения. Все 

необходимые оценки делаются по этой выборке.

Аппроксимация апостериорного распределения



Markov Chain Monte Carlo



MCMC

Мы не будем особо погружаться в теорию марковских цепей, и просто рассмотрим следующую 

структуру:

● Есть некоторое множество состояний 𝔛,

● Для каждого состояния 𝑥 ∈ 𝔛 есть распределение перехода 𝑇 𝑥′ 𝑥 на 𝔛.

Имея такую структуру мы можем начать блуждать по 𝔛: стартуем в точке 𝑥0, потом генерируем 

𝑥1 из 𝑇 ⋅ 𝑥0 , потом генерируем 𝑥2 из 𝑇 ⋅ 𝑥1  и так далее: 𝑥𝑖+1 генерируется из 𝑇 ⋅ 𝑥𝑖 .



MCMC

Последовательность 𝑥0, 𝑥1, 𝑥2, … называется траекторией. Если семейство распределений 

переходов обладают некоторыми специальными свойствами, то

1. Точки траектории, находящиеся далеко друг от друга, будут практически независимы.

2. Эти далекие точки будут иметь некоторое фиксированное распределение 𝜋 𝑥 , 

называющееся стационарным.



MCMC

Последовательность 𝑥0, 𝑥1, 𝑥2, … называется траекторией. Если семейство распределений 

переходов обладают некоторыми специальными свойствами, то

1. Точки траектории, находящиеся далеко друг от друга, будут практически независимы.

2. Эти далекие точки будут иметь некоторое фиксированное распределение 𝜋 𝑥 , 

называющееся стационарным.

Цель MCMC — выбрать такие 𝑇, чтобы стационарное распределение было равно нужному нам 

распределению 𝑝 𝑥 , и чтобы точки траекторий становились достаточно независимыми 

достаточно быстро.

Если это выполнено, то мы можем сгенерировать выборку из 𝑝 𝑥 , сгенерировав длинную 

траекторию и потом выбрав достаточно далеко отстоящие точки.



Алгоритм Метрополиса—Гастингса

Имеются достаточные условия на 𝑇 для существования единственного стационарного 

распределения, равного 𝑝 𝑥 :

1.  Принцип детального равновесия: 𝑝 𝑥 𝑇 𝑥′ 𝑥 = 𝑝 𝑥′ 𝑇 𝑥 𝑥′

2.  𝑇 𝑥′ 𝑥 > 0 для всех 𝑥′ и 𝑥

Заметим, что из первого условия следует, что

𝑇 𝑥′ 𝑥

𝑇 𝑥 𝑥′
=
𝑝 𝑥′

𝑝 𝑥
.

Представим 𝑇 𝑥′ 𝑥  в виде 𝑇 𝑥′ 𝑥 = 𝑔 𝑥′ 𝑥 𝐴 𝑥′ 𝑥 , где 𝑔 𝑥′ 𝑥 это распределение, которое 

предлагает кандидатуру для очередного перехода, а 𝐴 𝑥′ 𝑥 это вероятность, с которой такой 

переход одобряется. Если переход не одобряется, то стоим на месте.



Алгоритм Метрополиса—Гастингса

𝑇 𝑥′ 𝑥

𝑇 𝑥 𝑥′
=
𝑝 𝑥′

𝑝 𝑥
.

Представим 𝑇 𝑥′ 𝑥  в виде 𝑇 𝑥′ 𝑥 = 𝑔 𝑥′ 𝑥 𝐴 𝑥′ 𝑥 , где 𝑔 𝑥′ 𝑥 это распределение, которое 

предлагает кандидатуру для очередного перехода, а 𝐴 𝑥′ 𝑥 это вероятность, с которой такой 

переход одобряется. Если переход не одобряется, то стоим на месте.

Получаем

𝐴 𝑥′ 𝑥

𝐴 𝑥 𝑥′
=
𝑝 𝑥′

𝑝 𝑥

𝑔 𝑥 𝑥′

𝑔 𝑥′ 𝑥
.

Заметим, что если взять 𝐴 𝑥′ 𝑥 = min 1,
𝑝 𝑥′

𝑝 𝑥

𝑔 𝑥 𝑥′

𝑔 𝑥′ 𝑥
, то все получится!



Алгоритм Метрополиса—Гастингса

𝑇 𝑥′ 𝑥

𝑇 𝑥 𝑥′
=
𝑝 𝑥′

𝑝 𝑥
.

Представим 𝑇 𝑥′ 𝑥  в виде 𝑇 𝑥′ 𝑥 = 𝑔 𝑥′ 𝑥 𝐴 𝑥′ 𝑥 , где 𝑔 𝑥′ 𝑥 это распределение, которое 

предлагает кандидатуру для очередного перехода, а 𝐴 𝑥′ 𝑥 это вероятность, с которой такой 

переход одобряется. Если переход не одобряется, то стоим на месте.

Получаем

𝐴 𝑥′ 𝑥

𝐴 𝑥 𝑥′
=
𝑝 𝑥′

𝑝 𝑥

𝑔 𝑥 𝑥′

𝑔 𝑥′ 𝑥
.

Заметим, что если взять 𝐴 𝑥′ 𝑥 = min 1,
𝑝 𝑥′

𝑝 𝑥

𝑔 𝑥 𝑥′

𝑔 𝑥′ 𝑥
, то все получится!

Нам достаточно знать 𝑝 𝑥  с точностью до множителя!



Алгоритм Метрополиса—Гастингса

Алгоритм:

1. Выбираем 𝑥0

2. Пока не надоест:

1. Генерируем 𝑥′ из 𝑔 ⋅ 𝑥𝑖

2. Считаем 𝐴 = min 1,
𝑝 𝑥′

𝑝 𝑥𝑖

𝑔 𝑥𝑖 𝑥
′

𝑔 𝑥′ 𝑥𝑖

3. С вероятностью 𝐴 берем 𝑥𝑖+1 = 𝑥′, а с вероятностью 1 − 𝐴 берем 𝑥𝑖+1 = 𝑥𝑖 .

Если 𝑔 𝑥 𝑥′ = 𝑔 𝑥′ 𝑥 , то 𝐴 считать еще проще: 𝐴 = min 1,
𝑝 𝑥′

𝑝 𝑥



Сэмплирование по Гиббсу

В многомерных пространствах сложно предлагать хорошие новые состояния для всего 

вектора 𝑥 = 𝑥1, … , 𝑥𝑛 сразу.

Решение: итеративно обновлять по одной переменной за раз, фиксируя все остальные. Это 

частный случай Метрополиса—Гастингса, в котором в качестве 𝑔 выступает распределение 

𝑝 ⋅ 𝑥−𝑖 , где 𝑖 может быть случайным, а может последовательно обходить все координаты. 

Распределение перехода не зависит от текущего значения 𝑥𝑖, и нетрудно показать, что в этом 

случае 𝐴 всегда будет равно 1.

Когда применяется: совместное распределение случайных величин неизвестно явно, но 

условные вероятности известны и из них легко генерировать.



Сэмплирование для BART

Сэмплирование из 𝑛 деревьев на верхнем уровне является сэмплированием по Гиббсу: мы 

проходим по деревьям по очереди и сэмплируем дерево из условного распределения. Это 

сэмплирование можно проводить разными способами, например, с помощью еще одного 

Метрополиса—Гастингса.



Направления для исследований

1. Другие структуры деревьев. Например, интересно посмотреть, что будет в случае таблиц 

решений — полных двоичных деревьев, у которых на каждом уровне стоит один и тот же 

предикат

2. Асимптотическое поведение. При возрастании числа деревьев BART сходится к 

гауссовскому процессу.

3. Эффективные алгоритмы для сэмплирования.
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