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TLDR

NEURAL
NETWORKS

- Stack more layers
- Within a special type of RL

methodology
- Called Contrastive RL

- And you will get significant boost in
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Literally, that’s it

- No novel method/algorithm/model is proposed

- No novel challenging problem is stated

- No novel dataset/benchmark is proposed

- No theoretical analysis is conducted

- This is a pure empirical paper
Surprisingly the paper is not only accepted to NeurlPS as oral but is also chosen as
a best paper (1 out 4 (+3 runner-ups))

—

Intro ~ 1 page 2. Related Work <1 page 3. Preliminaries ~ 1 page
4. Experiments > 5 pages (+7 pages Appendix) 5. Conclusion ~ 0.5 page



Strengths

- The empirical analysis is really thorough
- Great results (up to x50 speed up)

- Even if this only applies to certain setups and RL methodologies
- Simplicity + Code =>
the community can build up on the work Paper Decision

Decision by Program Chairs
Decision: Accept (oral)

The paradigm presented in this paper is relatively straightforward and makes use of three things. First, it uses a simple

self-supervised RL algorithm, contrastive RL (CRL), second it makes use of GPU-accelerated RL simulators to collect a

large amount of data, and third it makes use of modern network designs. This simplicity and the included code will

make it easier for the community to build upon this work.

The results and analysis are both equally impressive. On the JaxGCRL benchmarks the performance of contrastive RL
improves by 2x to 50x and their scaled CRL outperforms all other methods (by up to an order of magnitude) in nearly all
environments. Their analysis is extensive and well done.
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distribution of goals

What this paper is about
- Goal-conditioned reinforcement learning (S, A, po, p, PgsTg; v),

rg(se,ae) = (1 —7)p(se41 =g | S¢,ar) m(a | s,9) o the oy conatenee

Reward ~ (discounted) probability of reaching the goal

L(s,a,5;,8;) :'ls this a future state or random state?"

Q000000

,,,,,,,,, . goal encoder, ¥(sy)

- Contrastive RL

RL ~ classification |
whether current states and actions belong to the ‘ ‘ L
same or different trajectory. random state,

future state, S

trajectory 1 n
Eysenbach, B., Zhang, T., Levine, S. and p—— -
Salakhutdinov, R.R., Contrastive learning
as go al-conditioned reinforcement Figure 1: Reinforcement learning via contrastive learning. Our method uses contrastive learning to acquire
k representations of state-action pairs (¢(s, a)) and future states (¢(sf)), so that the representations of future
|ea rni ng ) N eur I PS 202 2 states are closer than the representations of random states. We prove that learned representation corresponds to a

value function for a certain reward function. To select actions for reaching goal s, the policy chooses the action
where ¢(s, a) is closest to (sg).



Ant big maze
ant hardest maze
arm binpick hard

Problem Suite Arm_push_easy
Arm push hard
Humanoid
: humanoid big maze
- JaxGCRL suite of GPU-accelerated humanoid u maze
environments (10 envs) Ant ud maze

ant ub5 maze
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Figure 3: Increasing depth results in new capabili-
ties: Row 1: A depth-4 agent collapses and throws itself
toward the goal. Row 2: A depth-16 agent walks upright.
Row 3: A depth-64 agent struggles and falls. Row 4: A
depth-256 agent vaults the wall acrobatically.
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Figure 5: Critical depth and residual connections.
Incrementally increasing depth results in marginal per-
formance gains (left). However, once a critical thresh-
old 1s reached, performance improves dramatically
(right) for networks with residual connections.



Results

Humanoid U Maze Humanoid Big Maze
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Figure 12: Testing the limits of scale. We extend
the results from Figure 1 by scaling networks even fur-
ther on the challenging Humanoid maze environments.
We observe continued performance improvements with
network depths of 256 and 1024 layers on Humanoid
U-Maze. Note that for the 1024-layer networks, we ob-
served the actor loss exploding at the onset of training,
so we maintained the actor depth at 512 while using
1024-layer networks only for the two critic encoders.
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25

Figure 9: Deeper Q-functions are qualitatively
different. In the U4-Maze, the start and goal posi-
tions are indicated by the ® and G symbols respec-
tively, and the visualized Q values are computed
via the Lo distance in the learned representation
space, i.e.. Q(s,a, 9) = |¢(s, a) — 1(g)l|2. The
shallow depth 4 network (left) naively relies on
Euclidean proximity, showing high Q values near
the start despite a maze wall. In contrast, the depth
64 network (right) clusters high Q values at the
goal, gradually tapering along the interior.



Key Take-aways

Simplicity may be the key
(to oral accepts, to winning the best-paper awards)

Empirical-only papers are ok
But
The results should be convincing
The analysis should be thorough
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Superposition Yields Robust
Neural Scaling

Yizhou Liu and Ziming Liu and Jeff Gore, NeurlPS
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Question: How will superposition influence the loss scaling with model dimension (width)?

Varying the degree of superposition and data structure, when is the loss a power law? And if
the loss 1s a power law, what will the exponent be?




Toy model

d Toy model of representation learning via data recovery
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Key concepts

r; = u;v;, u; ~ Bernoulli(p;) & v; ~ U(0, 2).

e Feature frequency: p; is the probability that feature 7 is activated (non-zero) in a sample,
which is assumed to decrease with i.

e Sparsity: We say features are sparse when E/n is small.

e The feature 7 is represented (in the hidden space) when W; is non-zero.
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Superposition tune
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Figure 3: Weight decay can tune the degree of superposition. (a) Positive weight decay (7 = 1 in
the figure) has ||W;||2 near 0 or 1, with frequent features more likely to be represented (color means
||W;||2 in frequency-rank plots). Negative weight decay (7 = —1) has ||IW;||» around 1. We show
results when a = 1, m = 100, yet the claim is generally true. (b) For all models, small weight
decays lead to strong superposition, and large weight decays lead to no superposition (¢; /2 = m/n).

G172 = {0 = [[Will2 > 1/2}|/n,




Weak superposition
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Weak superposition

Result 1: “Power law in, power law out" in the weak superposition regime

The loss is governed by a sum of frequencies of less frequent and not represented features.
Ideally, there are model dimension m most important features being represented. If feature
frequencies follow a power law, p; oc 1/ with a > 1, the loss or the summation starting at
m will be a power law with m with exponent o — 1.
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Figure 4: Loss at weak superposition can be well described by the frequency sum of ignored features.
(a) Observation and theory at weak superposition (i.e., Equation (4) as a function of number of
represented features, ¢ /on) agree when weight decay + is positive. (b) For those closest to the ideal
no superposition case, we expect a,,, = « — 1, which is close to measured values. Error bars are
standard errors. Details in Appendix D.5.



Strong superposition
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Strong superposition

Result 2: Geometric origin of 1/m loss scaling (a,,, = 1) at strong superposition

For even feature frequencies, vectors W; tend to be isotropic in space with squared overlaps
scaling like 1/m when n > m, leading to the robust 1/m power-law loss. For skewed
feature frequencies, representation vectors are heterogeneous in space, making loss sensitive
to feature frequencies, where it might need power-law frequencies to have power-law losses.
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Figure 6: Superposition may explain the neural scaling law observed in actual LLMs. We evaluate
four open- sourced model classes, Opt [39], GPT2 [40], Qwen [41], and Pythia [42], which have
model sizes from around 100M to 70B (evaluation details in Appendix C). (a) We found the mean
square overlaps of W; /||W;||2 roughly follow 1/m scaling, where W is the language model head. (b)
The model class is reflected by color as panel a, while we use shapes for evaluation datasets [43—46].
The loss related to model size is fitted as a power law, yielding empirical o, = 0.91 4= 0.04 close to
1. More analysis in Appendix D.7.

Result 3: Superposition is an important mechanism behind LLM neural scaling laws

LLMs operate in the strong superposition regime. The squared overlaps of token representa-
tions scale as 1/m, token frequencies are flat (&« = 1), and the model size relevant loss scales
closely to 1/m, agreeing with the toy model prediction.




