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Diffusion

Brown: observes Brownian motion B(t)
Laplace, Fourier: heat H'(t) = AH(t)
Einstein: Avogadro number via BM

Fokker Planck equation, Langevin dynamics
Wiener: BM as a Fourier series

Polya: BM as a limit of Random Walk
Ornstein-Uhlenbeck dx(t) = —x(t)dt + B(t)
1td: Stochastic DEs dt = (dB(t))?
Feyman-Kac path integrals

Hairer: renormalixation for rough paths
Non-equilibrium thermodynamlcs T
Diffusions are everywhere - | e
BM/RW is universal B
Trajectories vs flows
Fourier analysis

?? Rough paths ??




Diffusion models

« Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli,(2015)
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
 Ho, Jain, Abbeel,(2020).

Denoising Diffusion Probabilistic Models

« Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole (2021)
Score-Based Generative Modeling through Stochastic Differential

- Diffuse by Gaussian to get (almost) Boltzmann Equations
 Integrate reverseSDE, try to mathc the score

The Forward Process
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Diffusion models

Forward Diffusion Process
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Forward

— \ [ Denoising Diffusion
dx(t) = —x(t)dt + dB(?) |« _ Probabilistic Models

Backward (DDPM).

_ d x (t) Reverse Diffusion Process

= (x(t) + 2V, log P (x))dt + B(t)

variational inference



Pluses and minuses

Training stability No adversarial min—max optimization

High sample quality Excellent mode coverage Low artifacts
Flexibility Conditional generation Inpainting, super-resolution, editing
Strong theoretical grounding Explicit likelihood Well-defined SDE
Sampling cost Requires tens to hundreds of denoising steps

- Compute-intensive training Large models, long training times

- Less interpretable representations Cf. VAEs / latent-variables

+
+
+
+

GAN output Diffusion model output




Question

Why Diffusion Models Don’t Memorize: The Role of Implicit
Dynamical Regularization in Training

Tony Bonnaire, Raphael Urfin, Giulio Biroli, Marc Mezard

Implicit dynamical regularization during training gives diffusion models a
generalization window that widens with the training set size, so stopping
within this window prevents memorization.

Why don’t diffusion models memorize training data?
In principle they could — overparametrization!

Yet, empirically, diffusion models generalize extremely
well, generate novel samples, interpolate smoothly, but
memorization only appears very late in training, if at all.

Main claim: that generalization in diffusion models is
driven primarily by training dynamics, through a form of
implicit dynamical regularization.
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Empirical observations

32 x 32 portraits, p = 4 x 10° trainable parameters
FID = 2-Gaussian Earth Mover Distance to training set

fmem = distance to the net of samples

n=1024, r= 100K n= 1024, r=1.62M
FID = 0.1, fom = 00% FID=19.1, fiu = 3.1%
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Figure 2: Memorization transition as a function of the training set size n for U-Net score models
on CelebA. (Left) FID (solid lines, left axis) and memorization fraction f,, e (dashed lines, right axis)
against training time 7 for various n. Inset: normalized memorization fraction fiem (7)/ fmem(Tmax)
with the rescaled time 7/n. (Middle) Training (solid lines) and test (dashed lines) loss with 7 for
several n at fixed ¢ = 0.01. Inset: both losses plotted against 7/n. Error bars on the losses are
imperceptible. (Right) Generated samples from the model trained with n = 1024 for 7 = 100K or

T = 1.62M steps, along with their nearest neighbors in the training set. _



Empirical observations

Tgen ~ const: onset of good sample quality

Tmem = dataset size: onset of memorization
Hence growing window without memorization
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Theoretic rationale

Memorization is ultimately driven by the overfitting of
the empirical score.

Initially L4, @and L, are indistinguishable, but
beyond a critical time, L,,.4;, continues to decrease
while L;.; increases, with generalization loss
depending on n.

Memorization is not due to data repetition —even if at
fixed t all models have processed each sample equally
often, larger n postpone memorization.

Instead, we see implicit dynamical regularization:
regularization arises indirectly from the optimization
dynamics themselves, via spectral bias.

Smooth, low-frequency components are learned quickly.
Highly oscillatory, high-frequency components are

learned SlOle. _



Toy model for analysis

Score: linear random-features model s(x) = )., wi ¢ (x)

« Train full-batch gradient descent on the denoising

* Features ¢, are fixed; only weights w,, are trained

« Data drawn i.i.d. from a population distribution p,

Training dynamics is exactly solvable

« Gradient flow reduces to linear regression

« Diagonalize dynamics in the eigenbasis of the feature
covariance C = E[¢p(x)¢p(x)T] , with eigenvalues 4,

Closed-form solution

Modes k evolve independently: wy .,y = wy (1 — e~ t)

Conlsuion

Large A;, (smooth) modes learned fast — generalization

Small 4, (fine-scale) modes learned slow — delayed

memorization



F Takeaways
« Explains robustness of diffusion models

 Early stopping is theoretically justified
» Generalization driven by dynamics

Do we want to study DM at LM?
+ A lot of SDE has not been used yet

- Need big compute?

Some things to do

* Modify diffusion component

» Control high frequencies with Fourier
* Try to project on training set directly
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