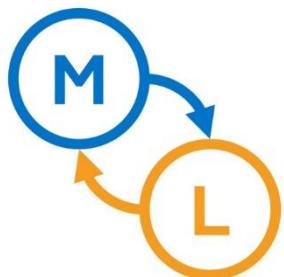
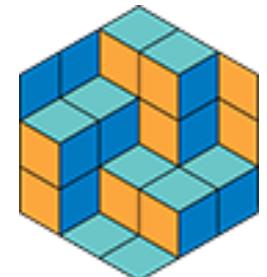


Why Diffusion Models Don't Memorize: The Role of Implicit Dynamical Regularization in Training

Bonnaire, Urfin, Biroli, Mézard
NeurIPS 2025



Brown: observes Brownian motion $\mathbf{B}(t)$

Laplace, Fourier: heat $H'(t) = \Delta H(t)$

Einstein: Avogadro number via BM

Fokker Planck equation, Langevin dynamics

Wiener: BM as a Fourier series

Polya: BM as a limit of Random Walk

Ornstein-Uhlenbeck $dx(t) = -x(t)dt + B(t)$

Itô: Stochastic DEs $dt = (dB(t))^2$

Feynman-Kac path integrals

Hairer: renormalization for rough paths

Non-equilibrium thermodynamics

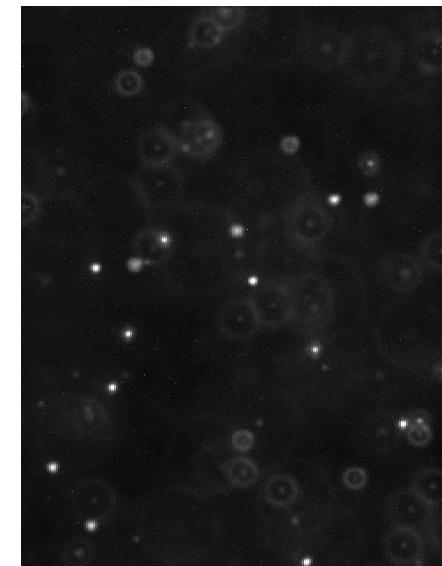
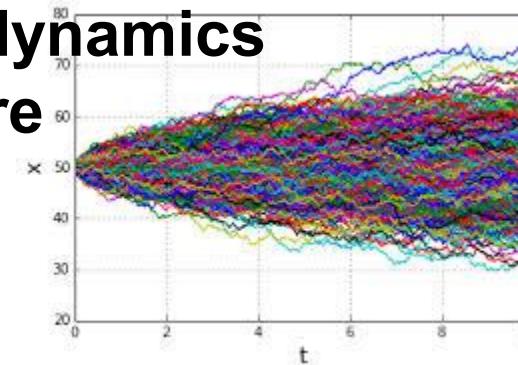
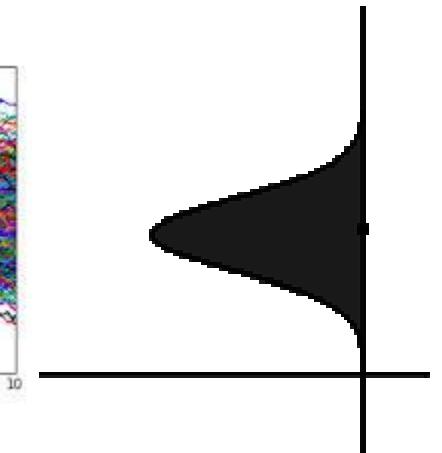
Diffusions are everywhere

BM/RW is universal

Trajectories vs flows

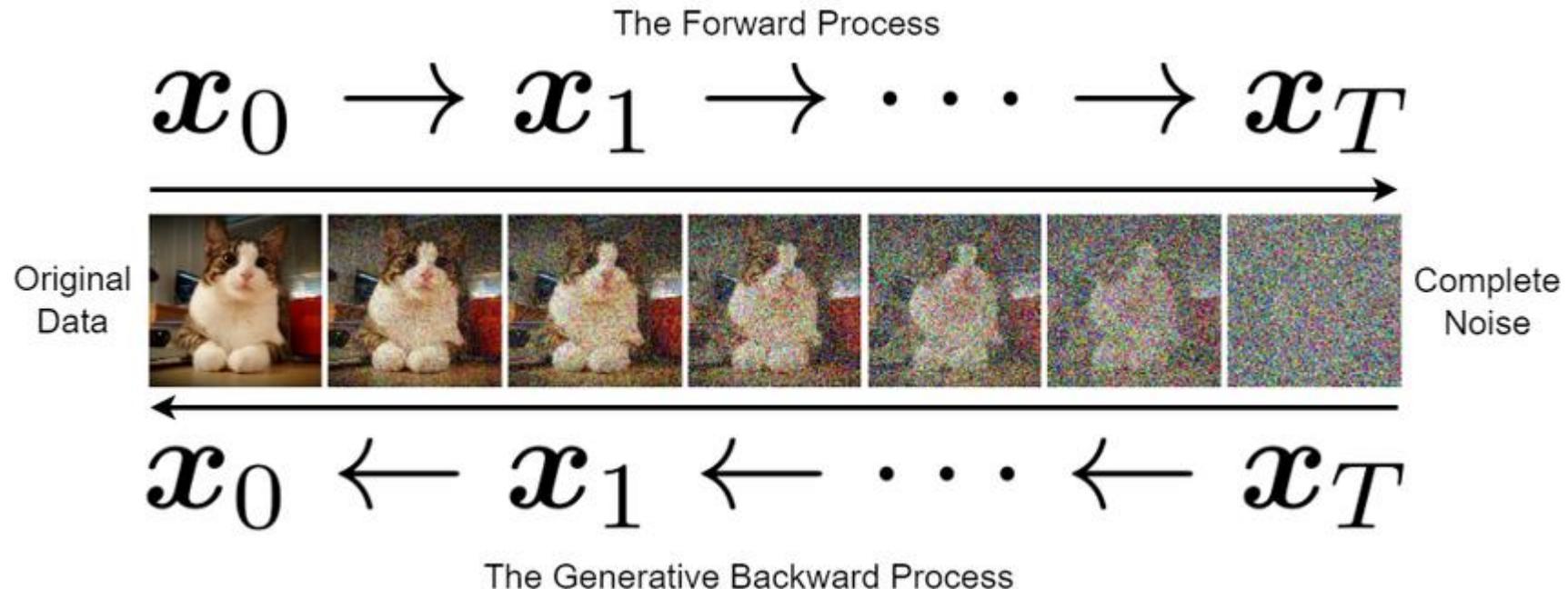
Fourier analysis

?? Rough paths ??



Diffusion models

- **Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli,(2015)**
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
- **Ho, Jain, Abbeel,(2020).**
Denoising Diffusion Probabilistic Models
- **Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole (2021)**
Score-Based Generative Modeling through Stochastic Differential Equations
- Diffuse by Gaussian to get (almost) Boltzmann
- Integrate reverseSDE, try to match the score



Diffusion models



Pluses and minuses

- + **Training stability** No adversarial min–max optimization
- + **High sample quality** Excellent mode coverage Low artifacts
- + **Flexibility** Conditional generation Inpainting, super-resolution, editing
- + **Strong theoretical grounding** Explicit likelihood Well-defined SDE
- **Sampling cost** Requires tens to hundreds of denoising steps
- **Compute-intensive training** Large models, long training times
- **Less interpretable representations** Cf. VAEs / latent-variables

Why Diffusion Models Don't Memorize: The Role of Implicit Dynamical Regularization in Training

[Tony Bonnaire](#), [Raphaël Urfin](#), [Giulio Biroli](#), [Marc Mezard](#)

Implicit dynamical regularization during training gives diffusion models a generalization window that widens with the training set size, so stopping within this window prevents memorization.

Why don't diffusion models memorize training data?

In principle they could – overparametrization!

Yet, empirically, diffusion models generalize extremely well, generate novel samples, interpolate smoothly, **but** memorization only appears very late in training, if at all.

Main claim: that generalization in diffusion models is driven primarily by training dynamics, through a form of implicit dynamical regularization.

Empirical observations

32×32 portraits, $p = 4 \times 10^6$ trainable parameters
 FID = 2-Gaussian Earth Mover Distance to training set
 f_{mem} = distance to the net of samples

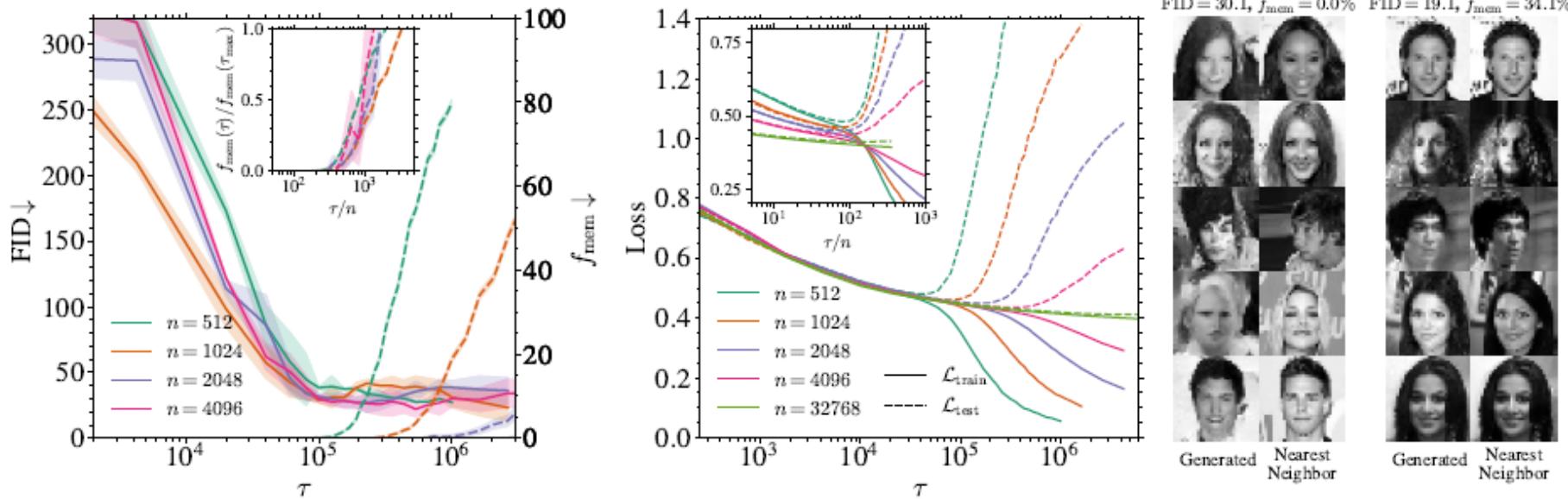


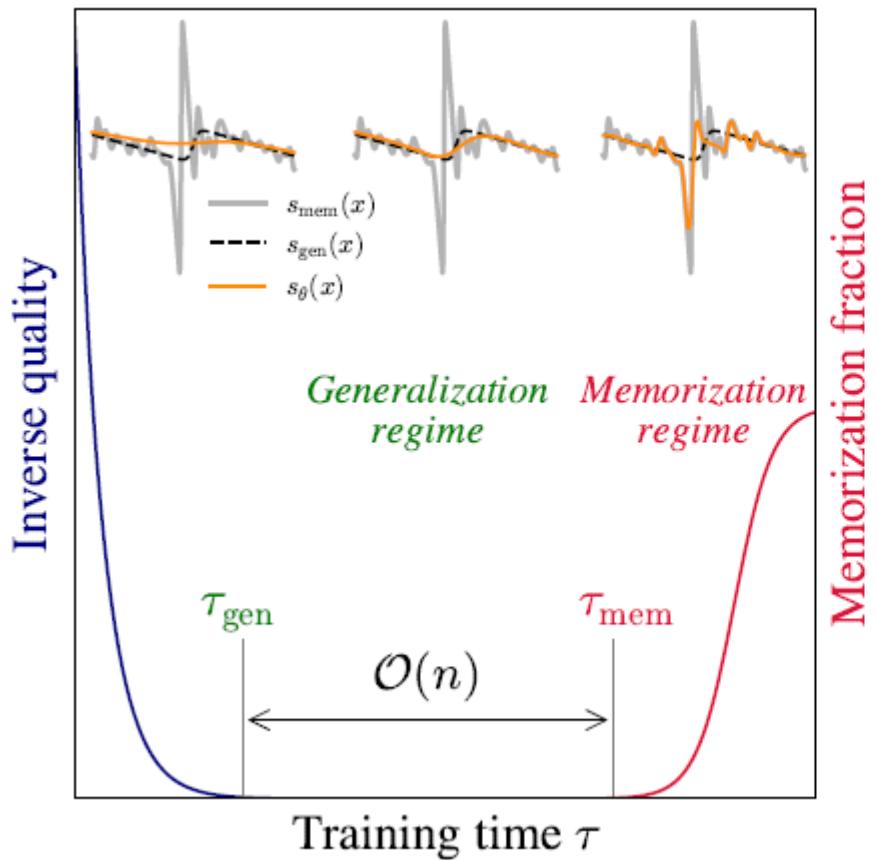
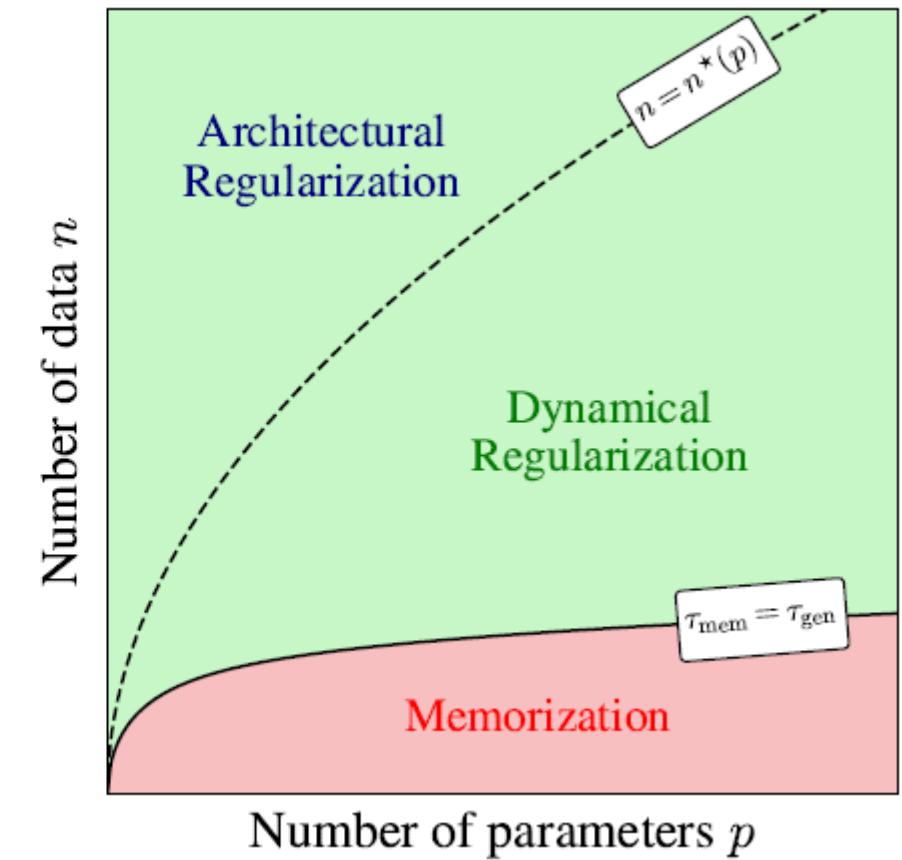
Figure 2: **Memorization transition as a function of the training set size n for U-Net score models on CelebA.** (Left) FID (solid lines, left axis) and memorization fraction f_{mem} (dashed lines, right axis) against training time τ for various n . Inset: normalized memorization fraction $f_{mem}(\tau)/f_{mem}(\tau_{max})$ with the rescaled time τ/n . (Middle) Training (solid lines) and test (dashed lines) loss with τ for several n at fixed $t = 0.01$. Inset: both losses plotted against τ/n . Error bars on the losses are imperceptible. (Right) Generated samples from the model trained with $n = 1024$ for $\tau = 100K$ or $\tau = 1.62M$ steps, along with their nearest neighbors in the training set.

Empirical observations

$\tau_{gen} \approx \text{const}$: onset of good sample quality

$\tau_{mem} \asymp \text{dataset size}$: onset of memorization

Hence growing window without memorization



Theoretic rationale

Memorization is ultimately driven by the overfitting of the empirical score.

Initially L_{train} and L_{test} are indistinguishable, but beyond a critical time, L_{train} continues to decrease while L_{test} increases, with generalization loss depending on n .

Memorization is not due to data repetition –even if at fixed t all models have processed each sample equally often, larger n postpone memorization.

Instead, we see **implicit dynamical regularization**: regularization arises indirectly from the **optimization dynamics themselves**, via **spectral bias**.

Smooth, low-frequency components are learned quickly. Highly oscillatory, high-frequency components are learned slowly.

Toy model for analysis

Score: **linear random-features model** $s(x) = \sum_k w_k \phi_k(x)$

- Train **full-batch gradient descent** on the denoising
- Features ϕ_k are fixed; only weights w_k are trained
- Data drawn i.i.d. from a population distribution p_0

Training dynamics is exactly solvable

- Gradient flow reduces to **linear regression**
- Diagonalize dynamics in the eigenbasis of the feature covariance $C = \mathbf{E}[\phi(x)\phi(x)^T]$, with eigenvalues λ_k

Closed-form solution

Modes k evolve independently: $w_{k(t)} = w_k(1 - e^{-\lambda_k t})$

Conclusion

Large λ_k (smooth) modes learned fast \rightarrow generalization

Small λ_k (fine-scale) modes learned slow \rightarrow delayed memorization

- Explains robustness of diffusion models
- Early stopping is theoretically justified
- Generalization driven by dynamics

Do we want to study DM at LM?

- + A lot of SDE has not been used yet
- Need big compute?

Some things to do

- Modify diffusion component
- Control high frequencies with Fourier
- Try to project on training set directly