

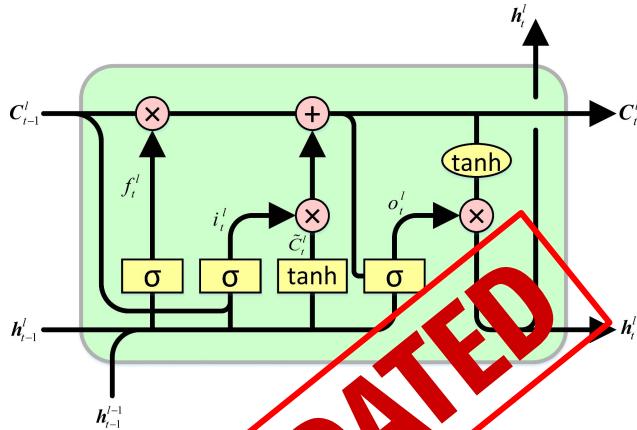
The Expressive Capacity of State Space Models: A Formal Language Perspective

Yash Sarrof, Yana Veitsman, and Michael Hahn
Saarland University, Germany
NeurIPS '24 (Poster)

Transformers are great!

Transformers are great!

But sometimes they are not.



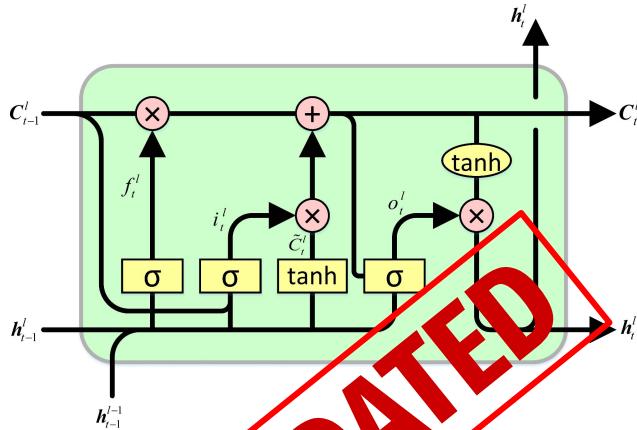
LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735–1780, 1997

Sepp Hochreiter
 Fakultät für Informatik
 Technische Universität München
 80290 München, Germany
 hochreit@informatik.tu-muenchen.de
<http://www7.informatik.tu-muenchen.de/~hochreit>

Jürgen Schmidhuber
 IDSIA
 Corso Elvezia 36
 6900 Lugano, Switzerland
 juergen@idsia.ch
<http://www.idsia.ch/~juergen>

**And LSTMs are
 impractical and outdated**



LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735–1780, 1997

Sepp Hochreiter

Fakultät für Informatik
Technische Universität München
80290 München, Germany

hochreit@informatik.tu-muenchen.de
<http://www7.informatik.tu-muenchen.de/~hochreit>

Jürgen Schmidhuber

IDSIA
Corso Elvezia 36
6900 Lugano, Switzerland
juergen@idsia.ch
<http://www.idsia.ch/~juergen>

**And LSTMs are
impractical and outdated**

**But on some tasks they are better
than Transformers!**

**Meanwhile State Space
Models are shiny and
promising**

**Meanwhile State Space
Models are shiny and
promising**

But they desperately fail some tasks
that are easy for Transformers!

**Then how can we even say that one architecture is better
than the others?**

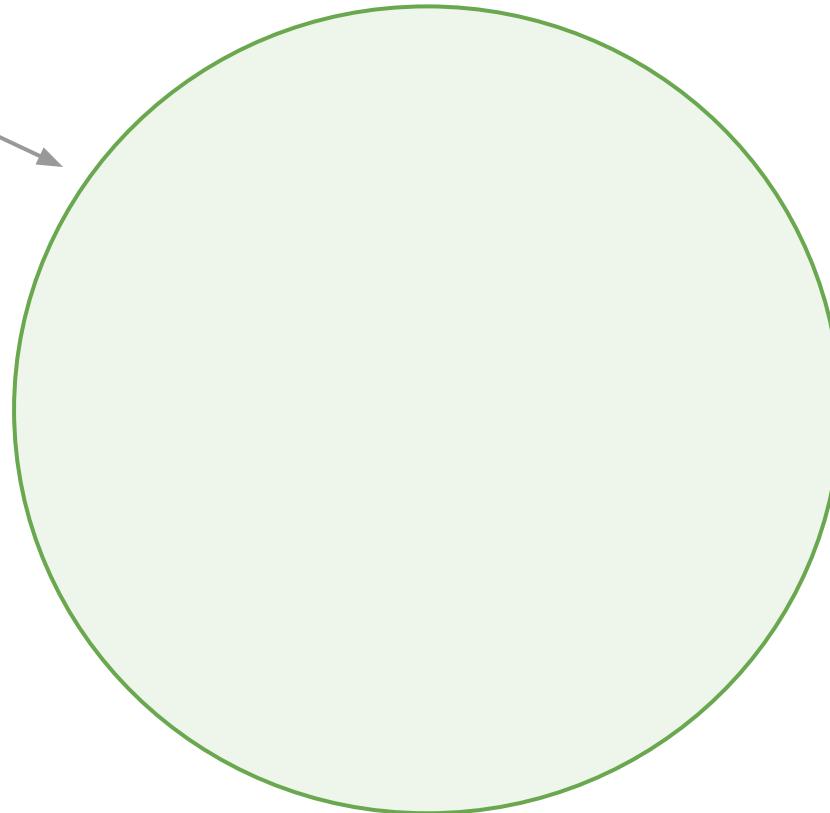
Then how can we even say that one architecture is better than the others?

We can't! But different architectures can solve different tasks.

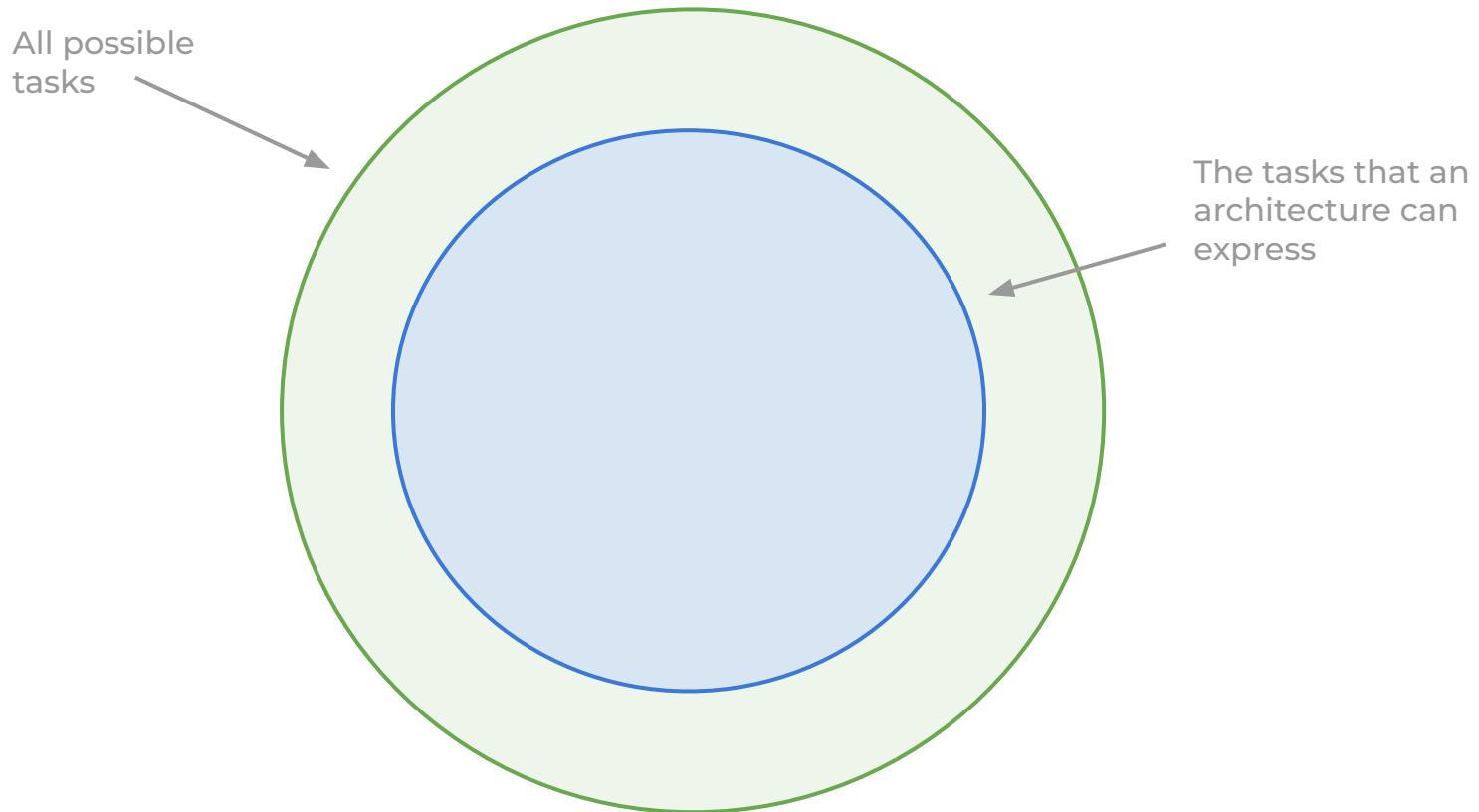
And theoretical analysis is here to help!

The research questions

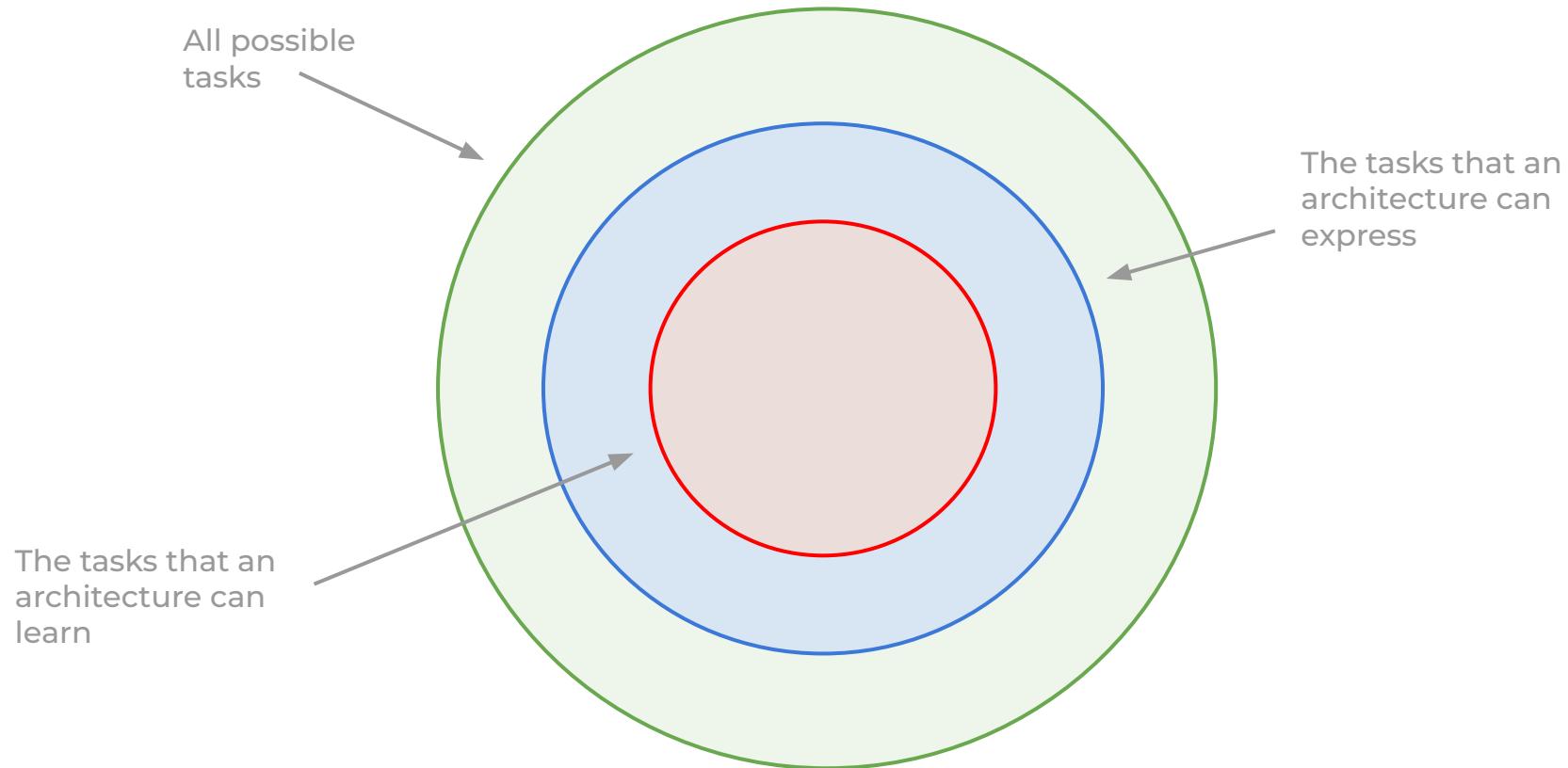
All possible
tasks



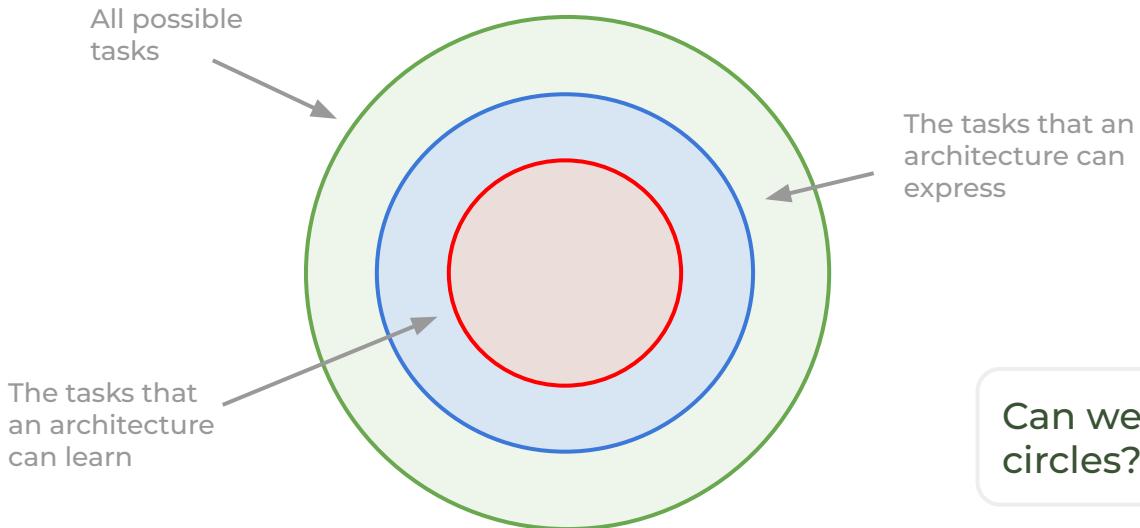
The research questions



The research questions



The research questions

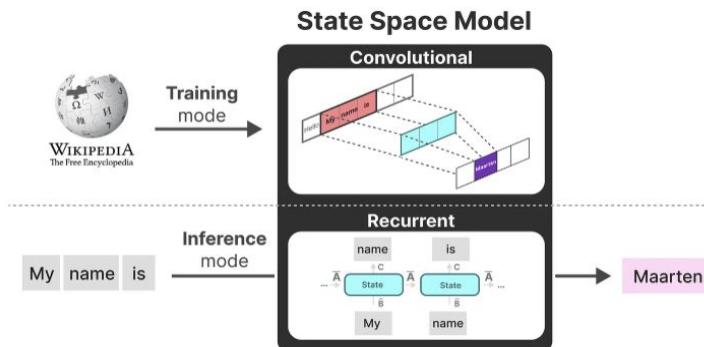


Can we find the exact borders of those circles?

And understand why they are like that?

Architecture	Training	Inference
RNN	Not Parallelizable	Linear
Transformer	Parallelizable	Quadratic
SSM	Parallelizable	Linear

$$h_t = A(x_t) \circ h_{t-1} + B(x_t)$$



- Recurrent design,
- Unlike RNNs ;
 - No non-linearity, while updating the hidden state
- Allows faster training through
 - Convolution view
(A is a common factor)
 - Prefix scan
(Associative operations)

Motivation for studying Expressivity of SSMs

Research on Expressivity
of RNNs and Transformers

Research on Expressivity
of SSMs*

*Merrill, W., Petty, J., & Sabharwal, A. The Illusion of State in State-Space Models. In *Forty-first International Conference on Machine Learning*.

Sasha Rush

@srush_nlp

...

There are like 4 more linear RNN papers out today, but they all use different naming conventions 🤦

Might be nice if people synced on the "iconic" version like QKV?

Personally partial to: $h = Ah + Bx$, $y = C h$ where $A, B = f(\exp(d(x) i))$

Griffin

$$\begin{aligned}
r_t &= \sigma(W_a x_t + b_a), & \text{recurrence gate} \\
i_t &= \sigma(W_x x_t + b_x), & \text{input gate} \\
a_t &= a_t^{r_t}, \\
h_t &= a_t \odot h_{t-1} + \sqrt{1-a_t^2} \odot (i_t \odot x_t).
\end{aligned}$$

HGRN2

$$\begin{aligned}
\mathbf{g}_t &= \sigma(\mathbf{Ux}_t + \mathbf{b}_u), \\
\mathbf{i}_t &= \mathbf{Vx}_t + \mathbf{b}_v, \\
\mathbf{o}_t &= \tau(\mathbf{Wx}_t + \mathbf{b}_w), \\
\mathbf{h}_t &= \mathbf{g}_t \odot \mathbf{h}_{t-1} + (1 - \mathbf{g}_t) \odot \mathbf{i}_t, \\
\mathbf{y}_t &= \mathbf{h}_t \odot \mathbf{o}_t,
\end{aligned}$$

RetNet

$$\begin{aligned}
\mathbf{s}_n &= A\mathbf{s}_{n-1} + K_n^\top \mathbf{v}_n, \\
\mathbf{o}_n &= Q_n \mathbf{s}_n = \sum_{m=1}^n Q_n A^{n-m} K_m^\top \mathbf{v}_m,
\end{aligned}$$

Megalodon

$$\begin{aligned}
\mathbf{h}_t^{(j)} &= \boldsymbol{\alpha}_j (\cos \theta_j + i \sin \theta_j) \odot \mathbf{u}_t^{(j)} + (1 - \boldsymbol{\alpha}_j \odot \boldsymbol{\delta}_j) (\cos \theta_j + i \sin \theta_j) \odot \mathbf{h}_{t-1}^{(j)} \\
\mathbf{y}_{t,j} &= \text{Re}(\boldsymbol{\eta}_j^T \mathbf{h}_t^{(j)})
\end{aligned}$$

GLA

$$\mathbf{S}_t = \mathbf{G}_t \odot \mathbf{S}_{t-1} + \mathbf{k}_t^\top \mathbf{v}_t,$$

where we use an outer product to obtain $\mathbf{G}_t = \boldsymbol{\alpha}_t^\top \boldsymbol{\beta}_t$ for parameter-efficiency (Mao, 2022; Pramanik et al., 2023), where $\boldsymbol{\alpha}_t, \boldsymbol{\beta}_t \in (0, 1)^{1 \times d}$. In preliminary experiments we found that simply setting $\boldsymbol{\beta}_t = 1$ was sufficient, and thus we adopt the following simplified recurrent form of GLA,

$$\mathbf{S}_t = (\boldsymbol{\alpha}_t^\top \mathbf{1}) \odot \mathbf{S}_{t-1} + \mathbf{k}_t^\top \mathbf{v}_t, \quad (3)$$

Mamba

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t) \quad (1a)$$

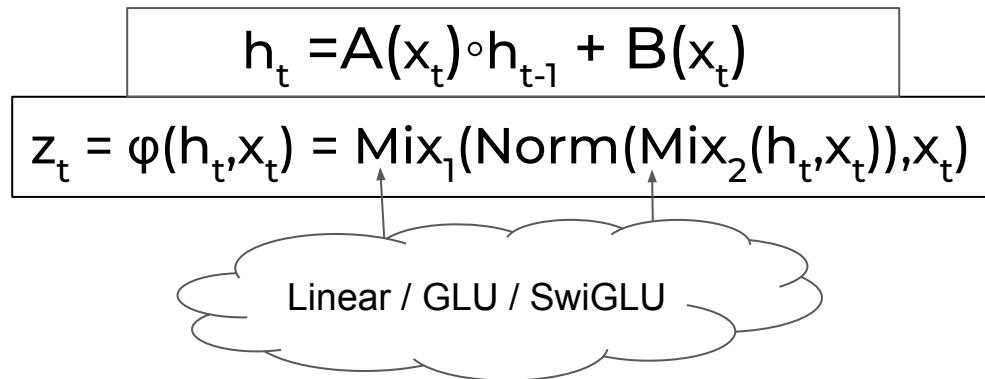
$$y(t) = \mathbf{C}h(t) \quad (1b)$$

$$h_t = \overline{\mathbf{A}}h_{t-1} + \overline{\mathbf{B}}x_t$$

$$y_t = \mathbf{C}h_t$$

Single Layer SSM

Map at input length T : $(x_t)_{t=1,..T} \rightarrow (z_t)_{t=1,..T}$



- $\text{GLU}(x) = (xW + b) \otimes \sigma(xV + c)$
- $\text{SwiGLU}(x) = \text{Swish}(xW_1 + b_1) \otimes (xW_2 + b_2)$
where $\text{Swish}(y) = y \cdot \sigma(y)$

Time-invariant SSMs

$A(x_t)$ does not dependent on x_t

- Examples: Hungry Hippos, **Retnet****

$$s_n = As_{n-1} + K_n^\top v_n,$$

$$o_n = Q_n s_n = \sum_{m=1}^n Q_n A^{n-m} K_m^\top v_m,$$

Non-negative SSMs

All entries in $A(x_t) \geq 0$

- Examples : **Mamba***, GLA, HGRN2

$$h_t = \bar{A}h_{t-1} + \bar{B}x_t \quad \bar{A} = \exp(\Delta A)$$
$$y_t = Ch_t$$

$$h_t = A(x_t) \circ h_{t-1} + B(x_t)$$

$$z_t = \phi(h_t, x_t) = \text{Mix}_1(\text{Norm}(\text{Mix}_2(h_t, x_t)), x_t)$$

* Gu, A., & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. *arXiv preprint arXiv:2312.00752*.

** Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., ... & Wei, F. (2023). Retentive network: A successor to transformer for large language models. *arXiv preprint arXiv:2307.08621*.

Star-Free Languages

Regular language class that is closed under finite union, product and complement

but not
Kleene-star, aka *

Example :: $(ab)^* = \{ \epsilon, ab, abab, \dots \}$

$$(ab)^* = (b\emptyset^c + \emptyset^c a + \emptyset^c aa\emptyset^c + \emptyset^c bb\emptyset^c)^c.$$

Non Star-Free Language

All Regular language that are not Star-Free :)

Along with Union, Product and Complement

REQUIRE THE INCLUSION OF
Kleene-star *

Example :: $(aa)^* = \{ \epsilon, aa, aaaa, \dots \}$

Non Star-Free Language

Example: **PARITY** function

Is the number of “1” in a bitstring even or odd?

110010000	1
110000000	0
110001110	1
000000000	0

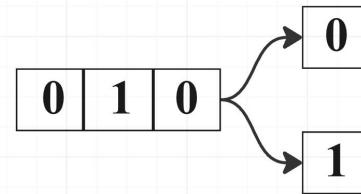
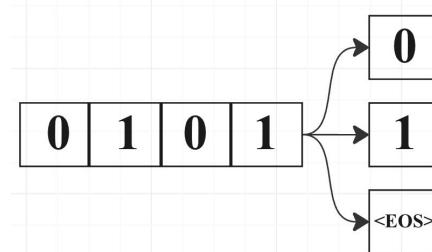
Parity is just $(aa)^*$ with an additional neutral symbol

Recognition

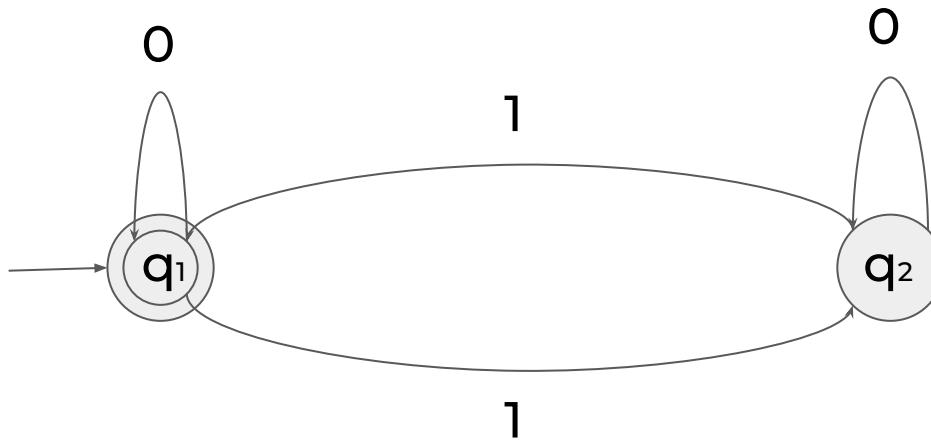
0	1	0
---	---	---

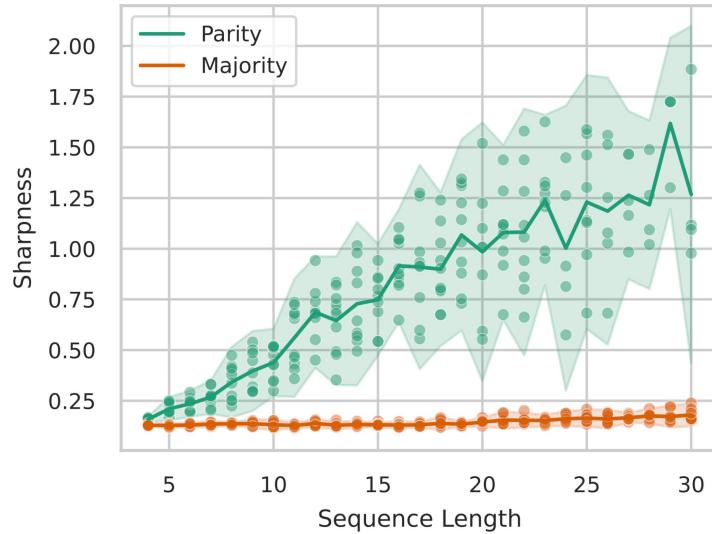
0	1	0	1
---	---	---	---

Predictive Modelling



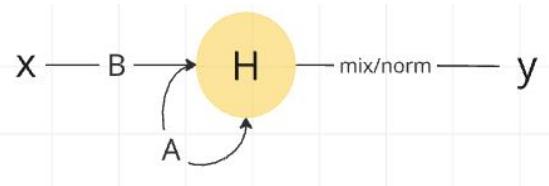
RNNs on Parity



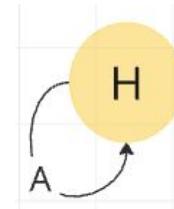


Minima of Transformers on sensitive functions is brittle*

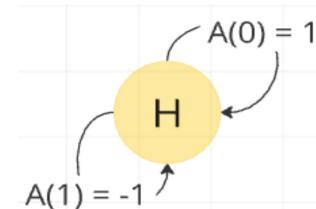
How do SSMs perform?



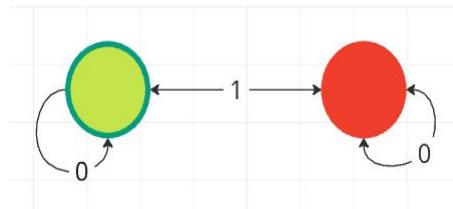
SSM Recurrence



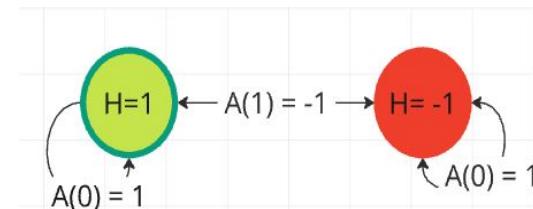
$B = 0$



Solution



FSA for solving Parity

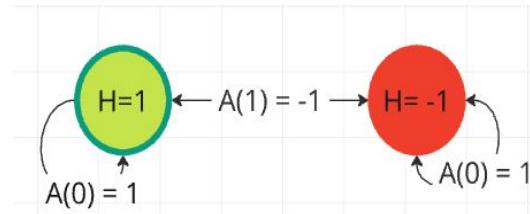


Our Construction

How do SSMs perform?

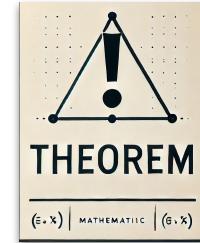
Our Solution

- A depends on input
:: Time Variant
- $A(1) = -1$
:: Negative
- Modern SSMs are either
 - Time Invariant
 - Non negative



NONNEGATIVE SSMs cannot recognize PARITY

- at arbitrary input lengths
- with finite precision.



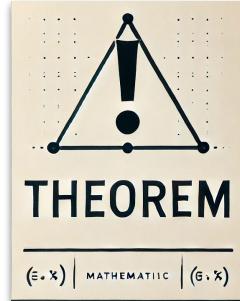
- Inputs of the form 1_N
- Activations Z_N converge as $N \rightarrow \infty$,
- Since x_t is the same, the following are constant $h_t = \alpha^{t-T_0} \left(h_{T_0} + \frac{\beta}{\alpha-1} \right) + \frac{\beta}{1-\alpha}$
 - ◆ $\beta = B(x_t)$
 - ◆ $\alpha = A(x_t)$

- Diverge exponentially ($\alpha > 1$), Converge ($\alpha < 1$), Diverge linearly ($\alpha = 1$)
- The Norm after Divergence causes overall convergence.
- Mix_1 , Norm, Mix_2 also don't change this.

TIME-INVARIANT SSMs cannot recognize PARITY

even with Complex Valued gates, as long as each entry in each A has a rational angle in the complex plane.

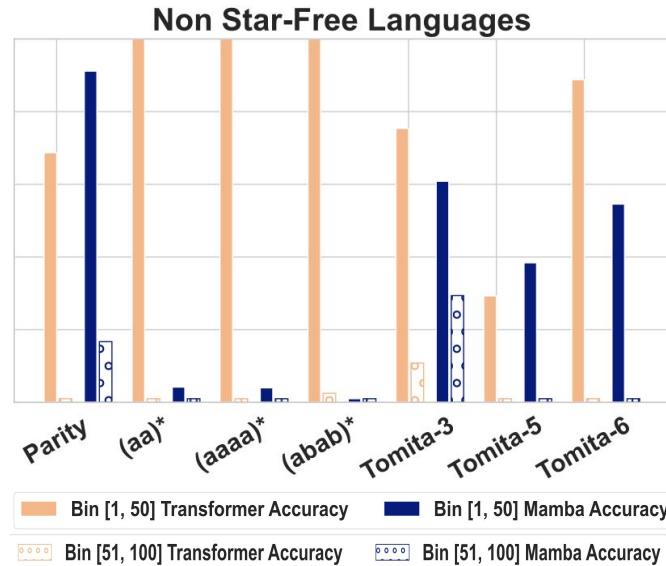
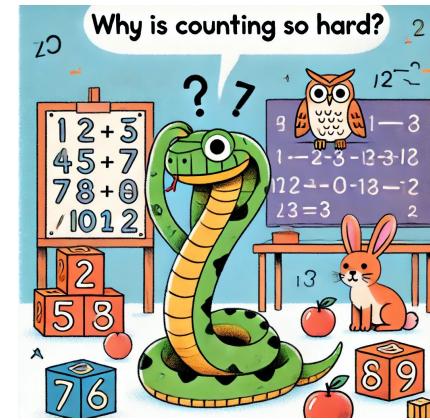
- at arbitrary input lengths
- with finite precision.



- Expand Recurrence, we will get several components in the equation
- Some will not depend on the sequence length t .
- The ones that will, make the overall value either
 - diverge exponentially,
 - converge ($\alpha < 1$)
 - diverge linearly ($\alpha = 1$)

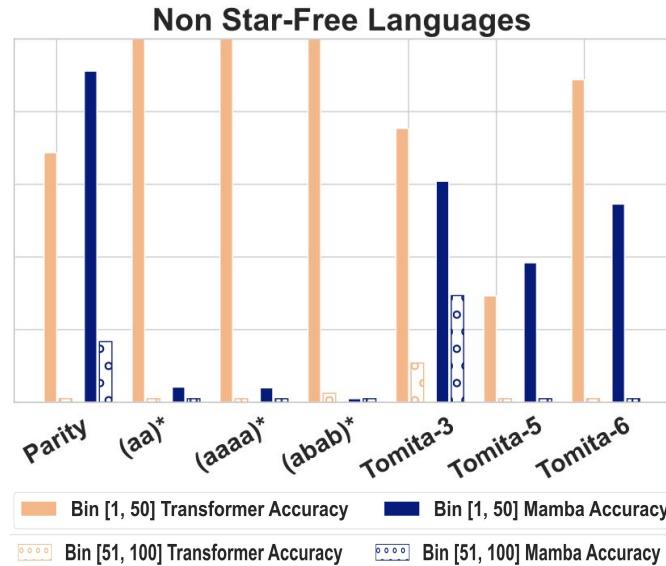
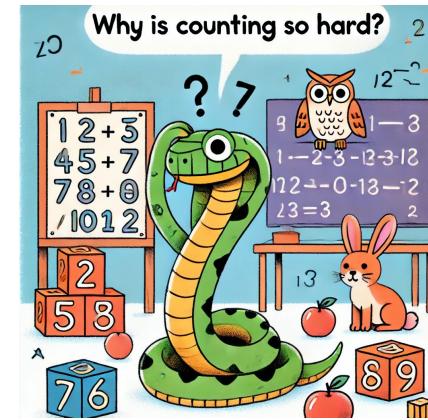
Takeaway #1

- SSMs will struggle with Modular counting whenever required.
(Non Star-Free languages require it)

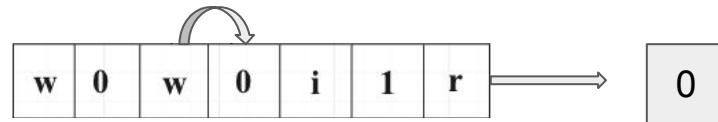


Takeaway #1

- SSMs will struggle with Modular counting whenever required.
(Non Star-Free languages require it)
- Certain design choices cause this limitation

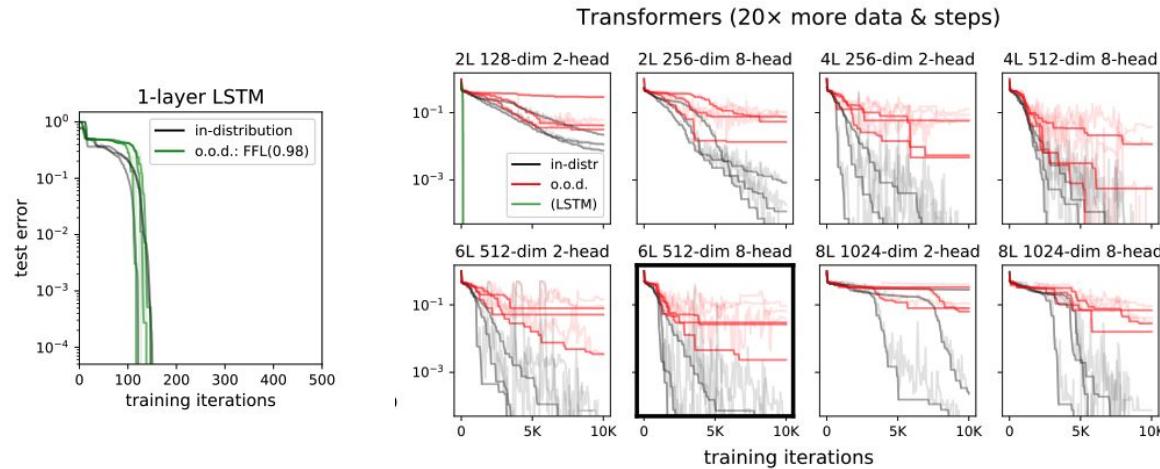


Flip-Flop



Minimalistic long-range dependency benchmark ~ Proxy for closed domain hallucinations.

Liu, Bingbin, et al. "Exposing attention glitches with flip-flop language modeling." NeurIPS, 2023



- Attention Heads: Commutative
- Attending to last write token ~ strong positional dependence in attention score

Jobanputra et al. “Born a Transformer – Always a Transformer? On the Effect of Pretraining on Architectural Abilities.” NeurIPS, 2025.

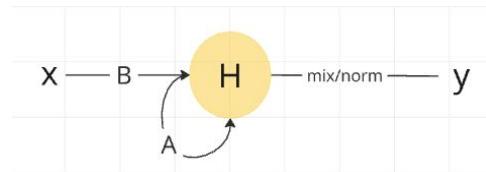
Set-Reset Automaton

FSA where $(Q \setminus q_0)$ also belongs to the Alphabet

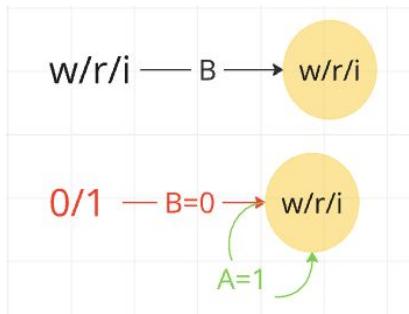
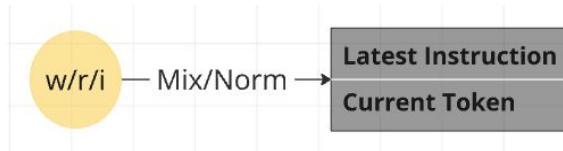
$$\begin{aligned} u(q, \sigma) &= q \text{ if } \sigma \notin Q \\ &= \sigma \text{ else} \end{aligned}$$

*Keeps recording the last seen
symbol from the designed set Q*

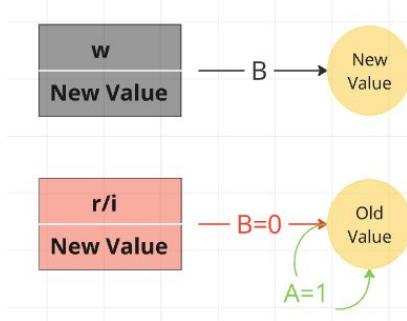
Our Theoretical Construction



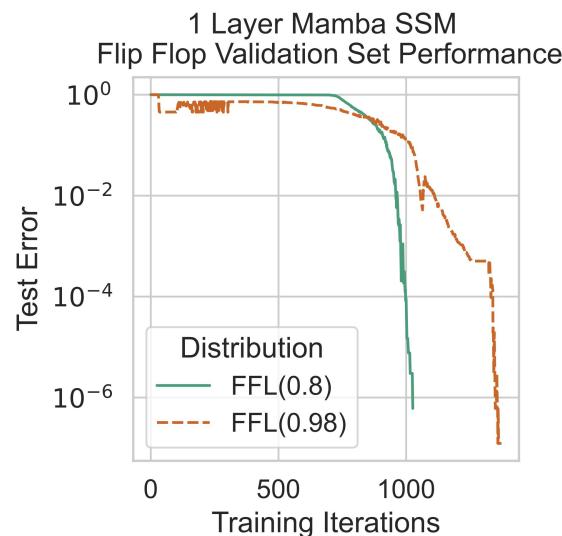
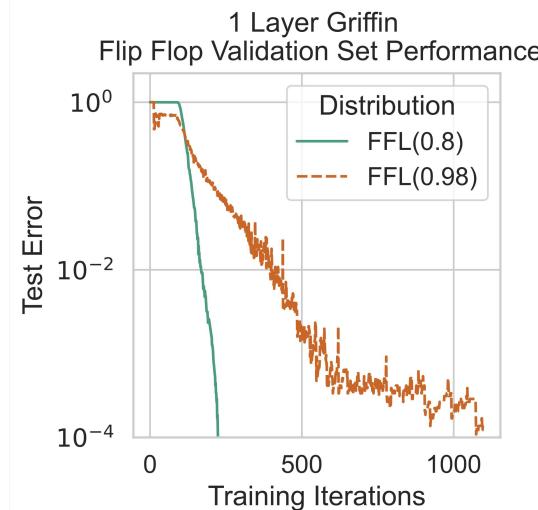
Layer 1



Layer 2



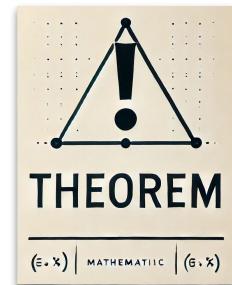
Empirical Results



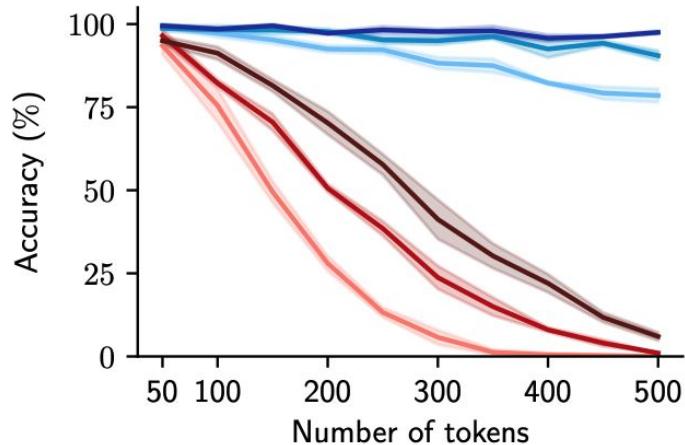
SSMs resolves a critical failure mode of self-attention

A 2 Layer SSM predictively models the Flip flop language

- at arbitrary input lengths
- with finite precision.

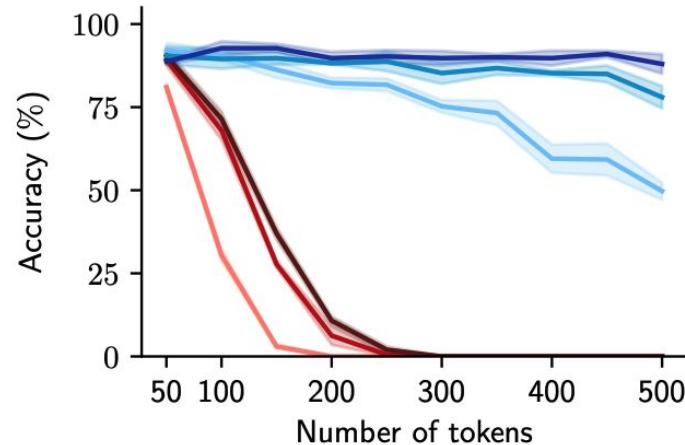


Transformers can copy, SSMs can't



Pythia: 410M 1.4B 2.8B
Mamba: 360M 1.4B 2.8B

(a) Copy: natural language strings

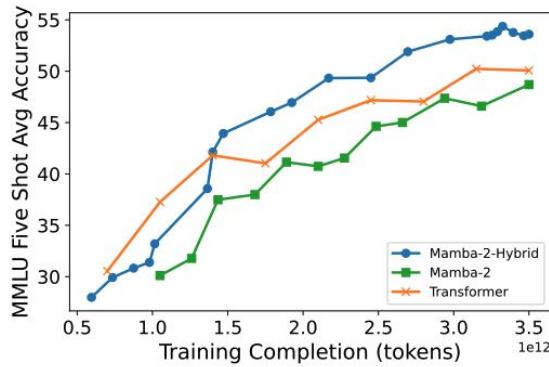


Pythia: 410M 1.4B 2.8B
Mamba: 360M 1.4B 2.8B

(b) Copy: shuffled strings

Takeaway #2

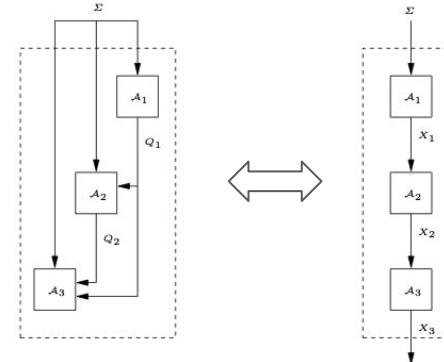
- Complementary Abilities b/w SSMs & Transformers
- Future: Hybrid Architecture



- Lieber, Opher, et al. "Jamba: A hybrid transformer-mamba language model." *arXiv preprint arXiv:2403.19887* (2024).
- Waleffe, Roger, et al. "An Empirical Study of Mamba-based Language Models." *arXiv preprint arXiv:2406.07887* (2024).
- Ren, Liliang, et al. "Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling." *arXiv preprint arXiv:2406.07522* (2024).

Star-Free Languages

- ALL Star Free languages can be reduced to Flip Flop State Tracking
 - Any counter free FSA => Cascade of simpler Set-Reset Automatas (Flip Flop banks)

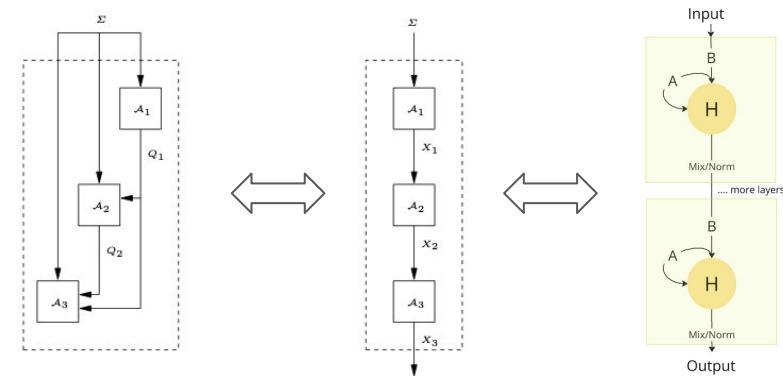


*Krohn, Kenneth, and John Rhodes. "Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines." *Transactions of the American Mathematical Society* 116 (1965): 450-464.

*Schützenberger, Marcel Paul. "On finite monoids having only trivial subgroups." *Inf. Control.* 8.2 (1965): 190-194.

Star-Free Languages

- ALL Star Free languages can be reduced to Flip Flop State Tracking
 - Any counter free FSA => Cascade of simpler Set-Reset Automatas (Flip Flop banks)
- We show, Cascade of simpler Automatas ~ Stacking SSMs

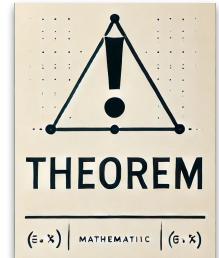


*Krohn, Kenneth, and John Rhodes. "Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines." *Transactions of the American Mathematical Society* 116 (1965): 450-464.

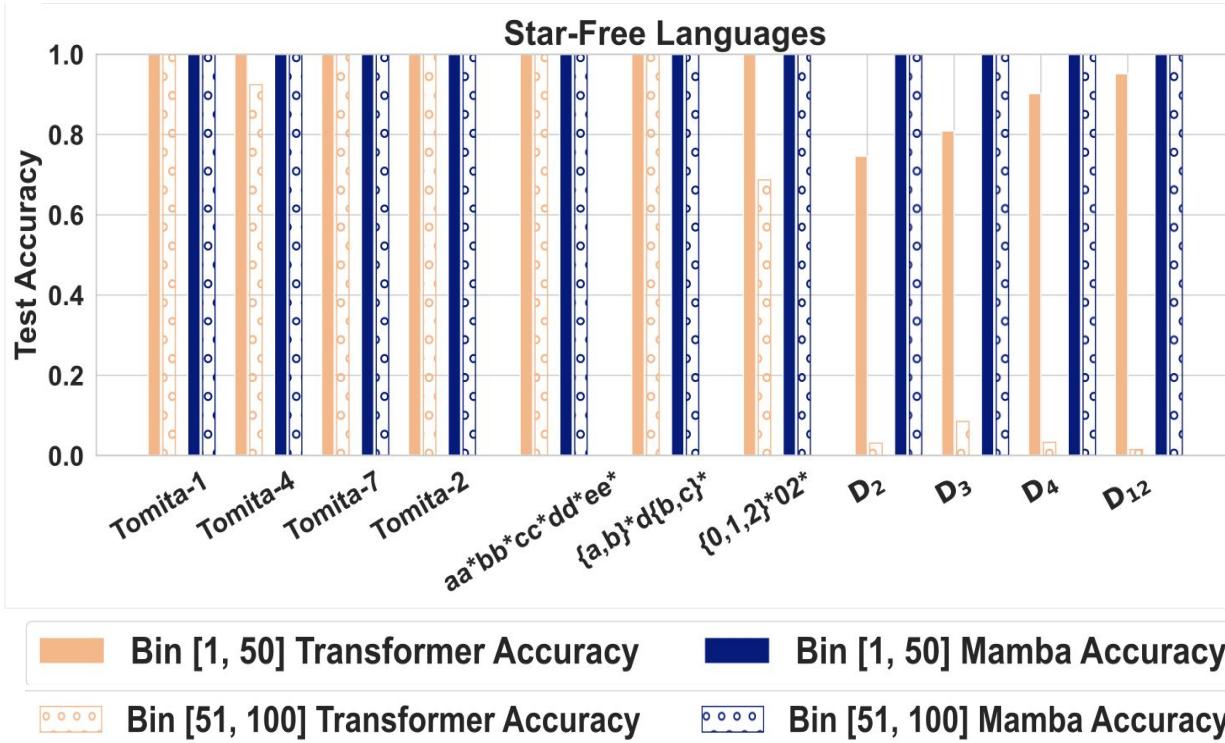
*Schützenberger, Marcel Paul. "On finite monoids having only trivial subgroups." *Inf. Control.* 8.2 (1965): 190-194.

NON-NEGATIVE SSMs can predictively model Regular Languages

- iff the language is star free
- with finite precision.

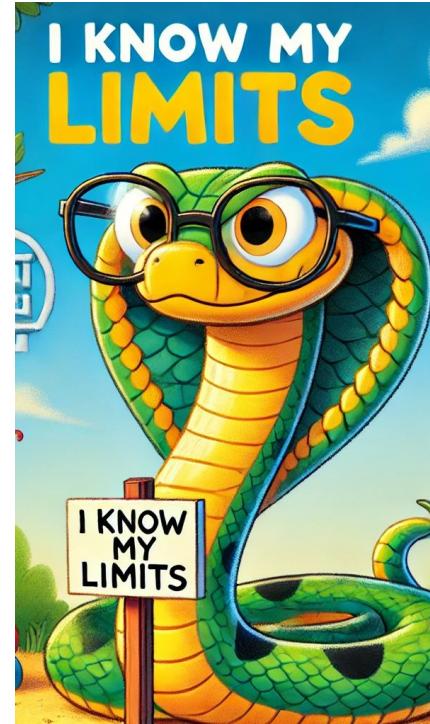


Empirical Results



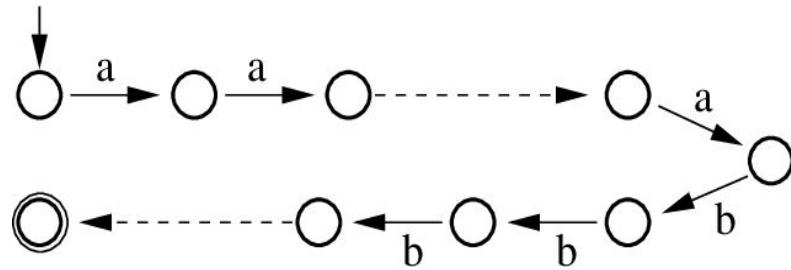
Takeaway #3

- Exact characterisation of Transformers* in Finite state case: Difficult.
- With SSMs, it's possible!

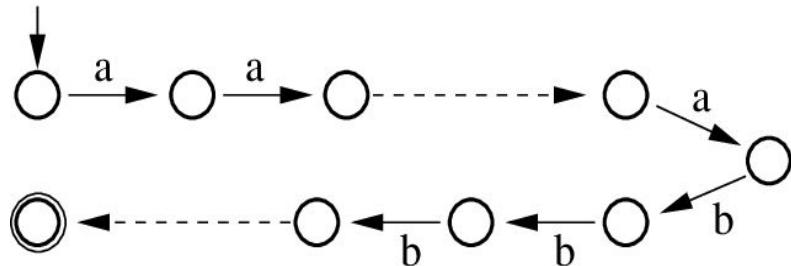
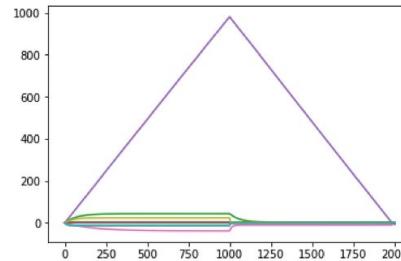


*Angluin, Dana, David Chiang, and Andy Yang. "Masked hard-attention transformers and boolean RASP recognize exactly the star-free languages." *arXiv:2310.13897*(2023).

Unbounded Counting

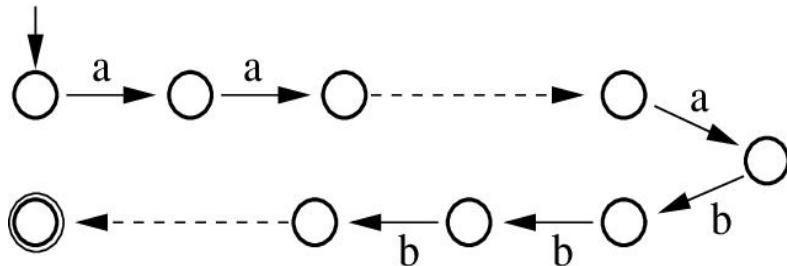
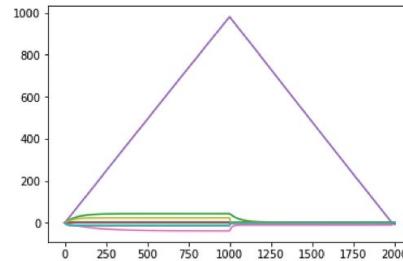


Unbounded Counting

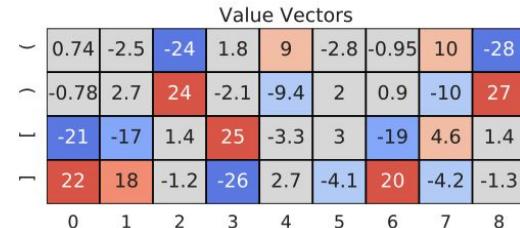


LSTM Activation Pattern

Unbounded Counting



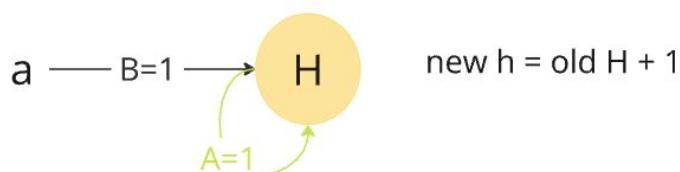
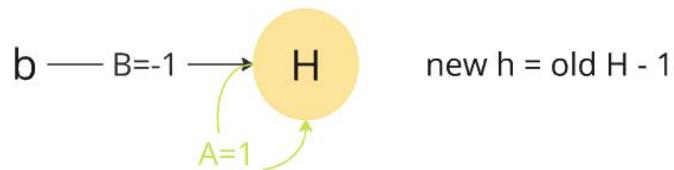
LSTM Activation Pattern



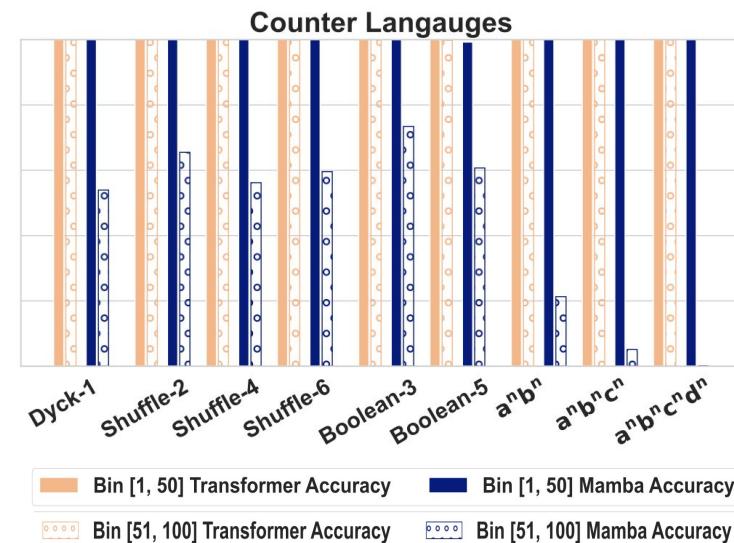
Attention Values in Transformers

Weiss, Gail, Yoav Goldberg, and Eran Yahav. "On the Practical Computational Power of Finite Precision RNNs for Language Recognition." (*Volume 2: Short Papers*). ACL 2018
Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages." - EMNLP 2020.

Our Construction: $a^n b^n$



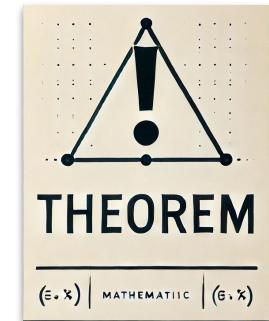
Empirical Results



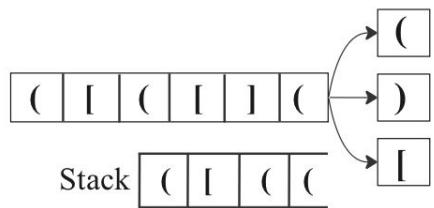
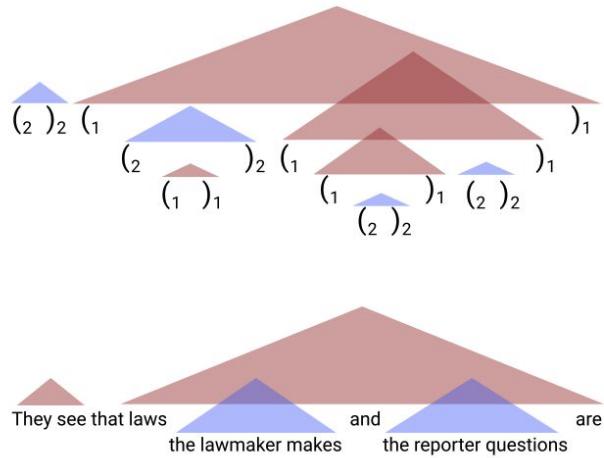
SSMs can predictively model

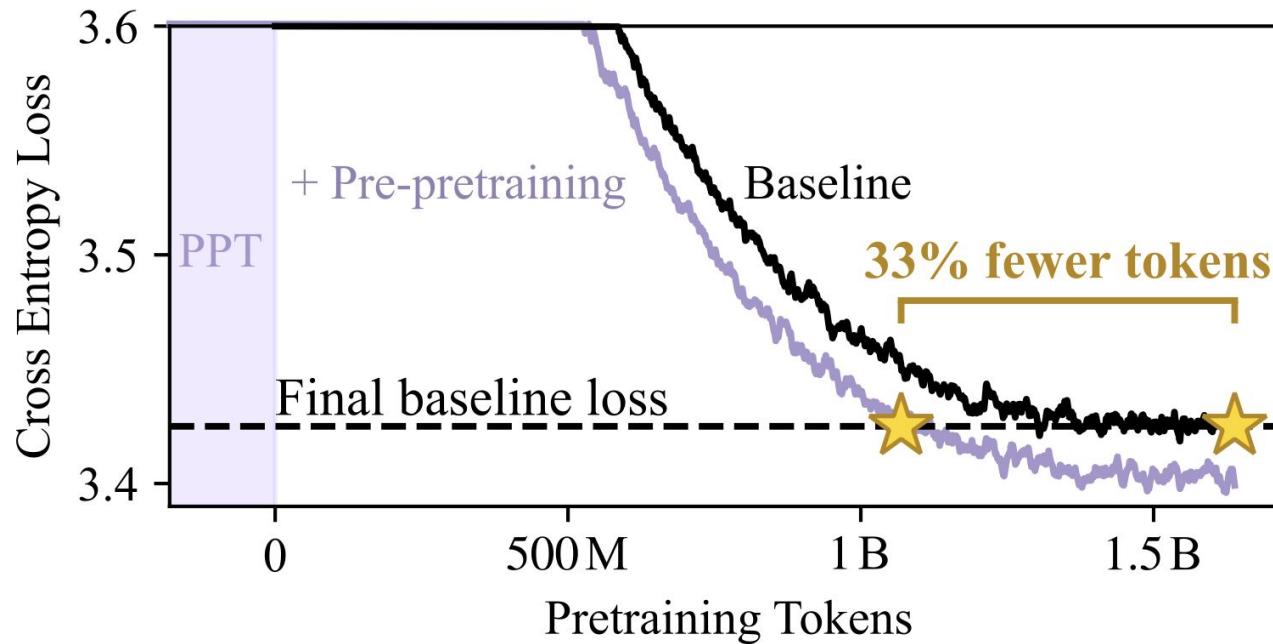
- Dyck-1
- Shuffle-Dyck-k
- n-ary Boolean Expressions
- $a^n b^n$, $a^n b^n c^n$, $a^n b^n c^n d^n$

with finite fractional #bits, but unbounded integer #bits

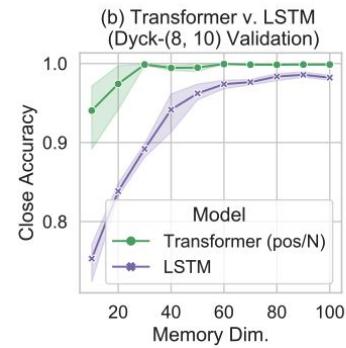


Bounded Dyck : Dyck(K, m)



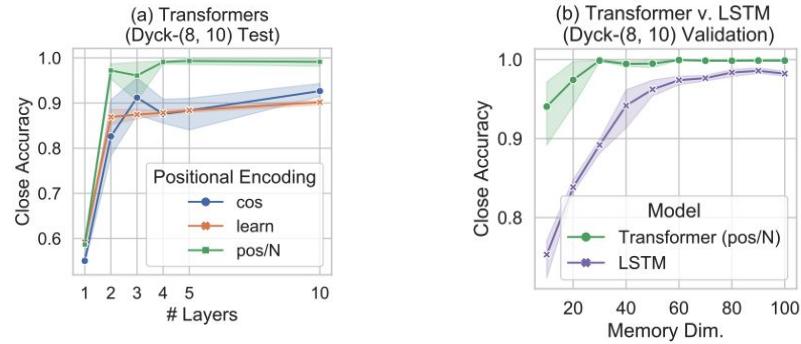


Hu et al. "Between Circuits and Chomsky: Pre-pretraining on Formal Languages Imparts Linguistic Biases." ACL, 2025.



- LSTMs require $O(m \log K)$
- Transformers - $O(\log K)$

Hewitt, John, et al. "RNNs can generate bounded hierarchical languages with optimal memory." *EMNLP* 2020.
 Yao, Shunyu, et al. "Self-Attention Networks Can Process Bounded Hierarchical Languages." *ACL* 2021.



- LSTMs require $O(m \log K)$
- Transformers - $O(\log K)$
- Transformers require specific PE

Hewitt, John, et al. "RNNs can generate bounded hierarchical languages with optimal memory." *EMNLP 2020*.
 Yao, Shunyu, et al. "Self-Attention Networks Can Process Bounded Hierarchical Languages." *ACL 2021*.

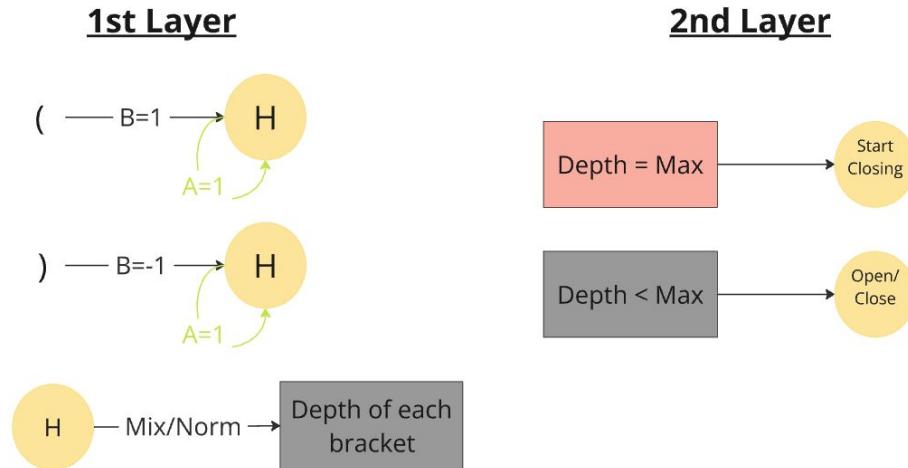
Our Construction

- $\text{Dyck}(K, m)$: Regular language
 - Solution Guaranteed
- EXPLICIT STACK
NOT REQUIRED
(shortcut through counting)
- Hence, EFFICIENT



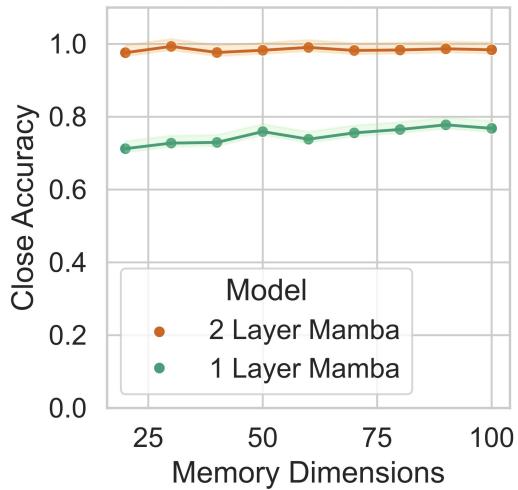
Our Construction

- $\text{Dyck}(K, m)$: Regular language
 - Solution Guaranteed
(not necessarily efficient)
- EXPLICIT STACK
NOT REQUIRED
(shortcut through counting)
- Hence, EFFICIENT

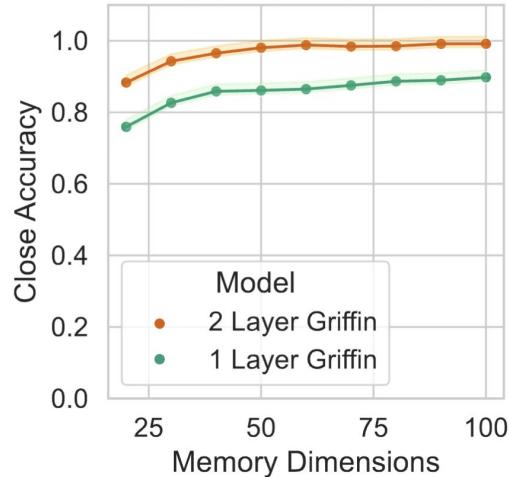


Empirical Results

Mamba SSM Layer 1 vs Layer 2
(Dyck-(8, 10), Test)

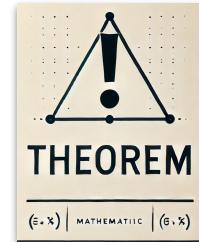


Griffin SSM Layer 1 vs Layer 2
(Dyck-(8, 10), Test)



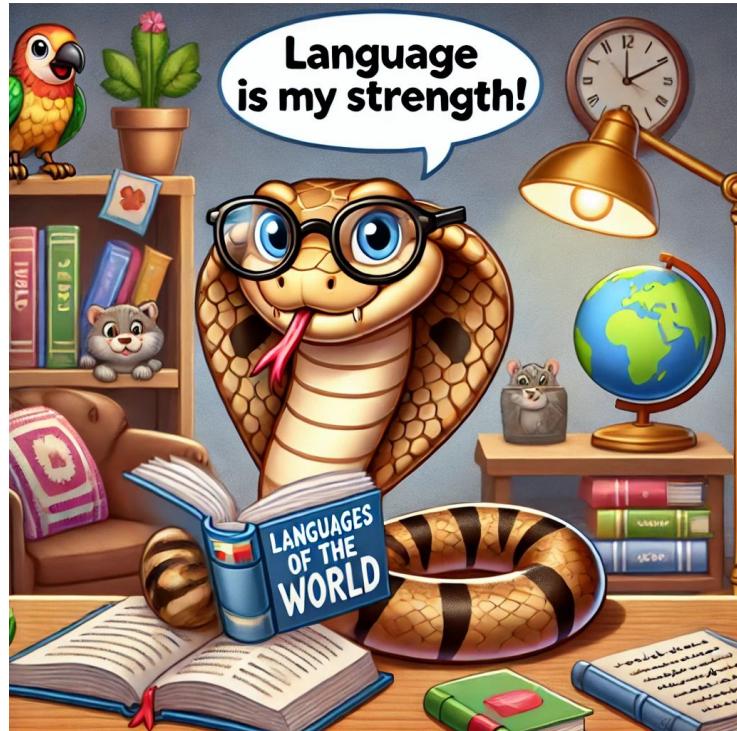
A 2 Layer SSM predictively models Bounded Dyck (K, m)

- with $d = O(m \log K)$
- with finite precision.



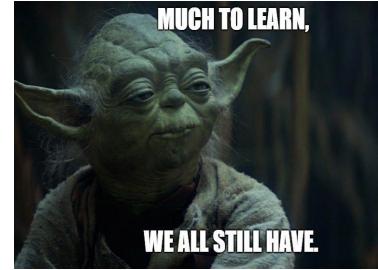
Takeaway #4

- SSMs can keep track of bounded hierarchical structures
EFFICIENTLY!
- SSMs can model hierarchical structure of language



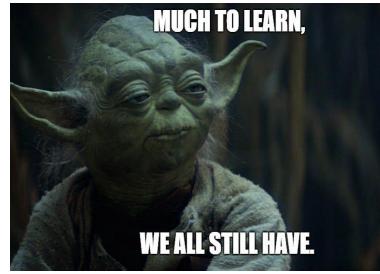
Limitations

- No comment on Learnability / Generalisability



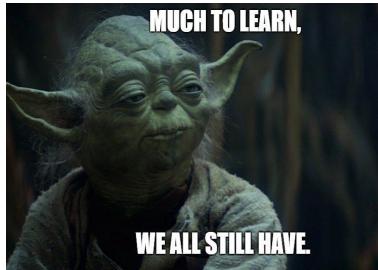
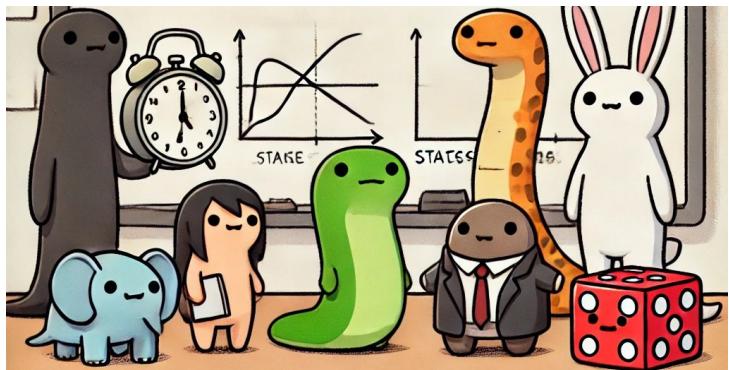
Limitations

- No comment on Learnability / Generalisability
- Positive claims needs more empirical evidence



Limitations

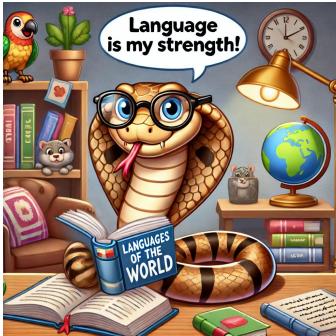
- No comment on Learnability / Generalisability
- Positive claims needs more empirical evidence
- More careful study required on the exact implementational differences



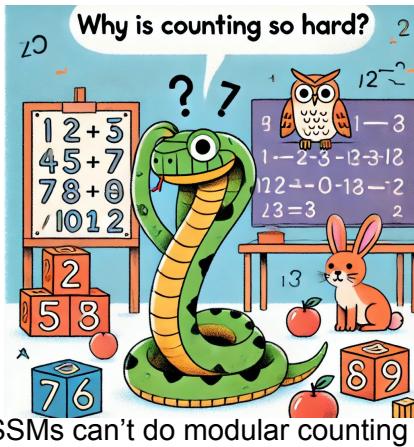
Recapping our main Theorems

- Finite precision
 - NONNEGATIVE SSMs cannot recognize PARITY at arbitrary input lengths.
 - NONNEGATIVE SSMs can predictively model a regular language iff it's star-free.
 - 2 - Layer SSM predictively models the Flip flop language at arbitrary lengths. (*Solutions were guaranteed with Krohn Rhodes, but not a 2 layer construction*)
 - 2 - Layer SSM predictively models Dyck(K, m) with $d = O(m \log K)$
- Unbounded integer values; Finite precision for fractional components
 - Dyck-1, Shuffle-Dyck- k , n -ary Boolean Expressions, $a^n b^n$, $a^n b^n c^n$, $a^n b^n c^n d^n$ are predictively modeled by an SSM

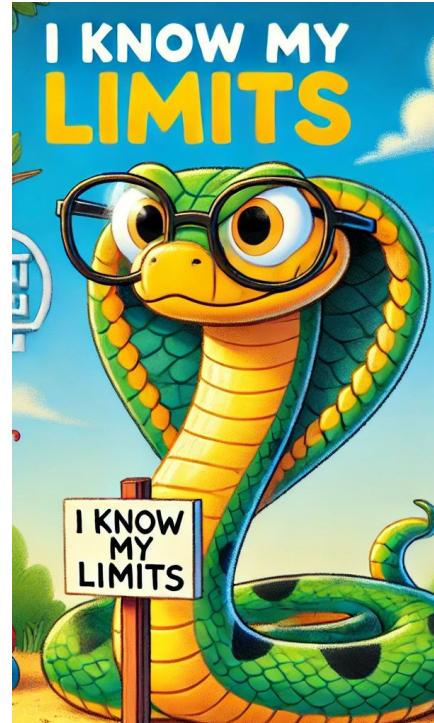
Recapping our takeaways



SSMs can model hierarchical structure of language



SSMs can't do modular counting



It would be easier to theoretically predict failures & abilities LLMs based on SSMs

LLMs will have Hybrid Architectures