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Transformers are great!




Transformers are great!

But sometimes they are not.
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And LSTMs are
impractical and outdated



And LSTMs are
" impractical and outdated

But on some tasks they are better
than Transformers!
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Meanwhile State Space
Models are shiny and
promising




Meanwhile State Space
Models are shiny and
promising

But they desperately fail some tasks
that are easy for Transformers!




Then how can we even say that one architecture is better
than the others?



Then how can we even say that one architecture is better
than the others?

We can’t! But different architectures can solve different
tasks.

And theoretical analysis is here to help!
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The research questions

All possible

tasks \

The tasks that an
architecture can
express

The tasks that an
architecture can
learn



The research questions

All possible

tasks \

The tasks that an
architecture can

express
The tasks that .

an architecture Can we find the exact borders of those
can learn circles?

And understand why they are like that?




Architecture | Training Inference

RNN
Transformer
SSM
State Space Model
Convolutional
W Training
h:.. mode
WiIKIPEDIA

‘The Free Encyclopedia

Inference

d
My name is goge.

— Maarten

h. =A(x)he + B(x)

Recurrent design,
Unlike RNNs;

o No non-linearity, while
updating the hidden
state

Allows faster training through

- Convolution view
(A is a common factor)

- Prefix scan
(Associative operations)

Source: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

Motivation for studying Expressivity of SSMs

Research on Expressivity
of RNNs and Transformers

*Merrill, W., Petty, J., & Sabharwal, A. The lllusion of State in State-Space Models. In Forty-first International Conference on Machine Learning.

Researcl
Q

n on Ex
f SSMS

pressivity
*
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&‘f(&’.“, Sasha Rush &
o
v

There are like 4 more linear RNN papers out today, but they all use

different naming conventions @

Might be nice if people synced on the "iconic" version like QKV?
Personally partial to: h = Ah + Bx, y = C hwhere A, B = f(exp(d(x) i))

16



RetNet

Griffin HGRN2
8 = O(WaX:+bu), recurrence gate gt —=F (Uxt + bu) ’ sn = Asn—l + K'rTL./UTH
iir = o(Wyx;+by), Iinputgate iy = Vx; + by, n
aQ = &, or = T (Wx; +by), On = QnSn = Z QnA" " K v,
he = a,0h_1+ I—G?O(l}ex,). ht =8t © ht_l + (1 o gt) © it’ s
yt = h; © o,
A Megalodon

hgj) = aj(cosb; +isinf;) ® ugj) + (1 —a;j ®d;)(cosb; +isinb;) © h@l
ye; = Re(njh”)
GLA

St :GtQSt_l'Fk;r’Ut,

Mamba where we use an outer product to obtain G; = o, 3; for

. . parameter-efficiency (Mao, 2022; Pramanik et al., 2023),

h'(t) = Ah(t) + Bx(t) (1a) h, = Ah,_; + Bx, where o, 3¢ € (0,1)1*%. In preliminary experiments we

y(t) = Ch(t) (1b) y, = Ch, found that mmply setFlng ,@t =1 was sufficient, and thus we
adopt the following simplified recurrent form of GLA,

Si=(af )OS 14k vy, 3)

17



Single Layer SSM

Map atinputlength T: (X)), ., ,*(Z),.; .

h, =A(x )°h , + B(x,)

z. = @(h,x) = hﬂix1(Norm(Mixz(ht,xt)),xt)

Linear / GLU / SwiGLU

18



Time-invariant SSMs Non-negative SSMs

A(x,) does not dependent on X, All entries in A(x)) >=0
e Examples: Hungry Hippos, Retnet** e Examples : Mamba*, GLA, HGRN2
8p = Asp_1+ K’JL.U'I’H h; = Xht..l +§xt s
n — Ch A =exp(AA)
Op = Qnsn = Z QnAn_mK;lvma Yr = c '
m=1

h, =A(x )°h,, + B(x,)
z. = @(h,x,) = Mix,(Norm(Mix, (h x.)),x)

*Gu, A, & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752.
**8un, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., ... & Wei, F. (2023). Retentive network: A successor to transformer for large language models. arXiv preprint arXiv:2307.08621.
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Star-Free Languages

Regular language class that is closed under finite
union, product and complement

but not
Kleene-star, aka *

Example :: (ab)* ={¢, ab, abab, ....}

(ab)* = (b0° + 0°a + 0°aald® + 0°bbO)®

20



Non Star-Free Language

All Regular language that are not Star-Free ;)

Along with Union, Product and Complement

REQUIRE THE INCLUSION OF
Kleene-star *

Example :: (aa)* = {¢, aa, aaaa, ...}

21



Non Star-Free Language

Example: PARITY function

Is the number of “1” in a bitstring even or odd?

1100100600 1
110000000 0
110001110 1
000000000 0

Parity is just (aa)* with an additional neutral symbol

22



Recognition PrediCtive MOde"ing_
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‘0|1|0 010<:1
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RNNs on Parity

.

1

O
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—— Parity
—— Majority 1
1.75 Q)

2.00

1.50

1.25

1.00

Sharpness

0.75

0.50

0.25

Sequence Length

Minima of Transformers on sensitive functions is brittle*

Hahn, Michael, and Mark Rofin. "Why are Sensitive Functions Hard for Transformers?" ACL 2024
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How do SSMs perform?

X—B 7 H — miwnorm
)

SSM Recurrence

o

FSA for solving Parity

/A(0)=1
Y -
Ay =-17
Solution

A0) = ! A(0) =

Our Construction

26



How do SSMs perform?

Our Solution
A depends on input
.. Time Variant

.. Negative

Modern SSMs are either
o Time Invariant
o Non negative

27



NONNEGATIVE SSMs cannot recognize PARITY
[ J

e at arbitrary input lengths fHEOREM
e with finite precision. PR

—>  Inputs of the form 1,
-> Activations Z, converge as N — <,
—>  Since x, is the same, the following are constant b = o~ To (hro + %) + %
® B=BKx)
®  =AKx)
e Diverge exponentially (« > 1), Converge (« < 1), Diverge linearly (o = 1)

e The Norm after Divergence causes overall convergence.
e Mix,, Norm, Mix, also don’t change this.



/TIME-INVARIANT SSMs cannot recognize PARITY\

even with Complex Valued gates, as long as It

each entry in each A has a rational angle in the AR

complex plane. THEOREM
e at arbitrary input lengths o) IR

K e with finite precision. /

e Expand Recurrence, we will get several components in the equation
e Some will not depend on the sequence length t.
e The ones that will, make the overall value either

O  diverge exponentially,
O  converge (a < 1)

O  diverge linearly (« = 1)

29



Takeaway #1 Non Star-Free Languages

Why is counting so hard? 2

SSMs will struggle with
Modular counting
whenever required. A

(Non Star-Free H 11 H 1
languages require it) TN S I

@ @®

D S
N\ g

o \%’
<« \)
<0

<0
Bin [1, 50] Transformer Accuracy ~ HEE Bin [1, 50] Mamba Accuracy

Bin [51, 100] Transformer Accuracy Bin [51, 100] Mamba Accuracy

Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages." EMNLP 2020.
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Takeaway #1 Non Star-Free Languages

Why is counting so hard? 2

e SSMs will struggle with
Modular counting
whenever required.
(Non Star-Free H N . . 1L
2] o

Iangugg es r.eqwre |.t) oY \M\* \abav\* ‘0‘6\@::0‘6\@, o
® Certaln des'gn ChOICeS Bin [1, 50] Transformer Accuracy ~ EEE Bin [1, 50] Mamba Accuracy

cause th |S Ilm Itatlon Bin [51, 100] Transformer Accuracy Bin [51, 100] Mamba Accuracy

Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages." EMNLP 2020.
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Flip-Flop

Minimalistic long-range dependency benchmark ~ Proxy for closed domain hallucinations.

Liu, Bingbin, et al. "Exposing attention glitches with flip-flop language modeling.” NeurlPS, 2023
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Transformers (20x more data & steps)

2L 128-dim 2-head 2L 256-dim 8-head 4L 256-dim 2-head 4L 512-dim 8-head

1-layer LSTM

—— in-distribution
—— o0.0.d.: FFL(0.98)

10-1 4

— in-distr

1073 4 —— o.0.d.

1 \ Ll\ ‘l’\_\

8L 1024-dim 2-head 8L 1024-dim 8-head

test error

0 100 200 300 400 500
training iterations |

0 5K 10K 0 5K 10K 0 5K
training iterations

e Attention Heads: Commutative
e Attending to last write token ~ strong positional dependence in attention score

Liu, Bingbin, et al. "Exposing attention glitches with flip-flop language modeling.” NeurlPS, 2023



Jobanputra et al. “Born a Transformer — Always a Transformer? On the Effect of Pretraining on Architectural Abilities.” NeurlPS, 2025.
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Set-Reset Automaton

FSA where (Q\ d,) also belongs to the Alphabet

u(q,o) =qifo€¢Q
=g else

Keeps recording the last seen
symbol from the designed set Q

35



Our Theoretical Construction X—BT | Ee——
At
Layer 1 Layer 2

wW/r/i — B——> wir/i = B, New

Value

0/1 —B=0— wir/i e
/ - ! B=0 Old
f\ 4 NewVaIue 7 Value
A=l ) A\:W )

w/r/i — Mix/Norm = c\?;,r:: | Mix/Norm : Forward —i 1t
Value
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Test Error

Empirical Results

1 Layer Mamba SSM 1 Laver Griffin
Flip Flop Validation Set Performance Flip Flop Valida)’:ion Set Performance
100
0 . . .
10 = Distribution
—— FFL(0.8)
1072 ---- FFL(0.98)
: N,
o 1072 i
10~ 2
ke
Distribution w* !
-6 —— FFL(0.8 Pl
10-6 (0.8) MWM-\'; 'lidvl'
---- FFL(0.98) e
1074 i
0 500 1000 0 500 1000

Training lterations

Training lterations

SSMs resolves a critical failure mode of self-attention
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-

\

A 2 Layer SSM predictively models the Flip flop language

o

e at arbitrary input lengths
e with finite precision.

THEOREM

%

(E. X) ‘ MATHEMAT

ne | (G\X)
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Transformers can copy, SSMs can’t

100 A w 100 -
S 751 S 754 .
> >
g 50 g 50 1
< 25 < 25 1
0 T 1 1 1 1 0 1 1 1 1 ) L
50 100 200 300 400 500 50 100 200 300 400 500
Number of tokens Number of tokens
Pythia: @ 410M W 1.4B W 2.8B Pythia: @ 410M W 1.4B W 2.8B
Mamba: ™ 360M M 1.4B W 2.8B Mamba: ™ 360M M 1.4B W 2.8B

(a) Copy: natural language strings (b) Copy: shuffled strings

Jelassi, Samy, et al. "Repeat after me: Transformers are better than state space models at copying." ICML, 2024 39



Takeaway #2

(%)
w
L

v
o
L

N
[

Complementary Abilities
b/w SSMs & Transformers
Future: Hybrid Architecture

»
o

w
w
L

~&- Mamba-2-Hybrid
~#~ Mamba-2
~»e= Transformer

05 1.0 15 20 25 30 35
Training Completion (tokens)

w
o

MMLU Five Shot Avg Accuracy

Lieber, Opher, et al. "Jamba: A hybrid transformer-mamba language model." arXiv preprint arXiv:2403.19887 (2024).
Waleffe, Roger, et al. "An Empirical Study of Mamba-based Language Models." arXiv preprint arXiv:2406.07887 (2024).
Ren, Liliang, et al. "Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling." arXiv preprint arXiv:2406.07522 (2024).
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Star-Free Lanquages

e ALL Star Free languages can be

reduced to Flip Flop State .
Tracking || [
o Any counter free FSA => BN &= [
Cascade of simpler =] e
Set-Reset Automatas 1Py - [=]
(Flip Flop banks) L | S

*Krohn, Kenneth, and John Rhodes. "Algebraic theory of machines. |. Prime decomposition theorem for finite semigroups and
machines." Transactions of the American Mathematical Society 116 (1965): 450-464.
*Schitzenberger, Marcel Paul. "On finite monoids having only trivial subgroups." Inf. Control. 8.2 (1965): 190-194.
41



Star-Free Lanquages

e ALL Star Free languages can be

reduced to Flip Flop State . !
Tracking D [ 7.
5 e ok

o Any counter free FSA => EH L &= i &=
Cascade of simpler ol | e Ci
Set-Reset Automatas 1Py - [=] )
(Flip Flop banks) besscssscssssessen | Lo o

e We show, Cascade of simpler
Automatas ~ Stacking SSMs

*Krohn, Kenneth, and John Rhodes. "Algebraic theory of machines. |. Prime decomposition theorem for finite semigroups and
machines." Transactions of the American Mathematical Society 116 (1965): 450-464.
*Schitzenberger, Marcel Paul. "On finite monoids having only trivial subgroups." Inf. Control. 8.2 (1965): 190-194.
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-

NON-NEGATIVE SSMs can predictively model Regular Languages

\

iff the language is star free
with finite precision.

\

THEOREM




Empirical Results

Star-Free Languages

1 -0 Of 9 q 0| Q q q
ol 0 q o o q q
0.8 o| 9 q o o q q
5 o o q o o q q
g 0.6 O q q (o] O q q
8 of q q o| o q q
< 0.4 o o q o o q q
prer) .
("2} o| g q o| ol q q
()
= 0.2 ol o q o o q q
’ ol o q o o q q
ol o q o o q q
0.0
A : ! ¥ x *
A &\\a'b‘ “\.\.@" &\‘%1 o8 e® R o 1};0'1' 01 03 OF o
¥
<0 <0 <0 <0 «cO ‘0\ \Q :\ B
-\tbv &0*
s

Bin [1, 50] Transformer Accuracy I Bin [1, 50] Mamba Accuracy
Bin [51, 100] Transformer Accuracy Bin [51, 100] Mamba Accuracy

Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages."- EMNLP 2020.
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Takeaway #3

e Exact characterisation of
Transformers™® in Finite
state case: Difficult.

e With SSMs, it's possible!

*Angluin, Dana, David Chiang, and Andy Yang. "Masked hard-attention transformers and boolean RASP recognize exactly the star-free languages." arXiv:2310.13897(2023).
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Unbounded Counting

46



1000
800

600

Unbounded Counting

400

200

0 250 500 750 1000 1250 1500 1750 2000

* LSTM Activation Pattern

Weiss, Gail, Yoav Goldberg, and Eran Yahav. "On the Practical Computational Power of Finite Precision RNNs for Language Recognition." (Volume 2: Short Papers). ACL 2018
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1000
800

600

Unbounded Counting

400

200

0 250 500 750 1000 1250 1500 1750 2000

+ LSTM Activation Pattern

O Value Vectors
/ —|0.74|-2.5 @Z8 1.8 | 9 |-2.8[0.95 10 &L
Q= O=70=0*b

b —~ 0.78| 2.7 8-2.11-94| 2

-t 1.4 -3.3| 3

- =152 B 2.7 |-4.1 gl

0 1 2 3 4 5 6 7 8

Attention Values in Transformers

Weiss, Gail, Yoav Goldberg, and Eran Yahav. "On the Practical Computational Power of Finite Precision RNNs for Language Recognition." (Volume 2: Short Papers). ACL 2018
Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages."- EMNLP 2020.



Our Construction: a"b" Empirical Results

Counter Langauges

a B=1 > H newh=oldH+1
[ EL]
—— R= - o o o
b B=-1——> H new h = Old H-1 \e’b‘ \)f(‘\eg’ \e,a(\ \eo(\"’ o(\b “v(\c (\(:\6
o 0" go° RS

Bin [1, 50] Transformer Accuracy = EEE Bin [1, 50] Mamba Accuracy
Bin [51, 100] Transformer Accuracy Bin [51, 100] Mamba Accuracy

Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages." EMNLP 2020.
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(s

Ms can predictively model

Dyck-1

Shuffle-Dyck-k

n-ary Boolean Expressions
a"b", a"b"c", a"b"c"d"

with finite fractional #bits, but unbounded integer #bits

.

THEOREM

e x) | marmemarnc | &%)

/
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Bounded Dyck : Dyck(K, m)

( o
(2 )2 (1 A )1
1111« ) G o )G )

Stack

(1 )1 (1 S )1 az

(i T(Jc u .

the lawmaker makes the reporter questions
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i
N

+ Pre-pretraining Baseline

33% fewer tokens
|

Final baseline loss

Cross Entropy Loss
(US)
N

-
~
]

0 500M 1B 1.5B
Pretraining Tokens

Hu et al. “Between Circuits and Chomsky: Pre-pretraining on Formal Languages Imparts Linguistic Biases.” ACL, 2025.



(b) Transformer v. LSTM
(Dyck-(8, 10) Validation)

0 g ——_—=u
> | i
8 /
é 0.9 P
g /
% "
o Model
208
o —e— Transformer (pos/N)
7 —e— LSTM

20 40 60 80 100
Memory Dim.

e LSTMs require O (m log K)
e Transformers - O (log K)

Heuwitt, John, et al. "RNNs can generate bounded hierarchical languages with optimal memory." EMNLP 2020.
Yao, Shunyu, et al. "Self-Attention Networks Can Process Bounded Hierarchical Languages." ACL 2021.
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(a) Transformers (b) Transformer v. LSTM

(Dyck-(8, 10) Test) (Dyck-(8, 10) Validation)
1.0 e —— 1.0 O g—g—0—0—0—0—0
~ )
'Y /./ =
%09 e ——— > . b7
© x/ <y @ /
308 509 #
Q> ] /
i i Positional Encoding i Y
0 0. h
8 Lo lCOS 3 0.8 Model
0.6 fios ear/nN o —e— Transformer (pos/N)
e ¥ —e— LSTM
123 45 10
# Layers 20 40 60 80 100
Memory Dim.

e LSTMs require O (m log K)
e Transformers - O (log K)
e Transformers require specific PE

Hewitt, John, et al. "RNNs can generate bounded hierarchical languages with optimal memory." EMNLP 2020.

Yao, Shunyu, et al. "Self-Attention Networks Can Process Bounded Hierarchical Languages." ACL 2021.
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Our Construction

1st Layer
Dyck(K, m) : Regular language
o  Solution Guaranteed (—B=1—> H

EXPLICIT STACK
NOT REQUIRED ) —B=1— H
(shortcut through counting)

Depth of each

Hence, EFFICIENT H — Mix/Norm — S




Dyck(K, m) : Regular language
o  Solution Guaranteed
(not necessarily efficient)

EXPLICIT STACK
NOT REQUIRED
(shortcut through counting)

Hence, EFFICIENT

Our Construction

1st Layer 2nd Layer
( —B=1—— H
Depth = Max —— cf;:.rr:g

) — B=-1 H Open/
Close
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1.0

Close Accuracy
o o o o
N ~ (o] (o]

o
o

Mamba SSM Layer 1 vs Layer 2

Empirical Results

(Dyck-(8, 10), Test)

— % —e—0—0—0o—0o—0o—2

M

25

Model
2 Layer Mamba
1 Layer Mamba

50 75
Memory Dimensions

100

Griffin SSM Layer 1 vs Layer 2
(Dyck-(8, 10), Test)

& 0.8

&

2

8 0.6

<

204

8 Model
0.2 e 2 Layer Giriffin

e 1 Layer Griffin

0.0

25 50 75 100
Memory Dimensions
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4 N

A 2 Layer SSM predictively models Bounded Dyck (K, m)

e withd= O(mlog K) fHEOREM
e with finite precision. PR oy

\_ /




Takeaway #4

SSMs can keep track of bounded
hierarchical structures
EFFICIENTLY!

SSMs can model hierarchical
structure of language

Language
is my strength!
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Limitations

No comment on Learnability /
Generalisability

r

WEALL ST!

’ :c%

MUCH TO LEARN,

ICHAVE,
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P

.. . MUCH TO LEARN e S I b o

s | ED FOR W7
Limitations = . j MORE PROOF! i&%
N et O

No comment on Learnability / éq
Generalisability r Ly
WEALL STI[EI!!!\II‘. ?@/ 0

Positive claims needs more
empirical evidence



H;IEII TO LEARN,

—

Limitations

No comment on Learnability /
Generalisability A

WEALL STILTHAVE.

Positive claims needs more
empirical evidence

More careful study required on
the exact implementational
differences
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Recapping our main Theorems

/ Finite precision \

o NONNEGATIVE SSMs cannot recognize PARITY at arbitrary input lengths.

o NONNEGATIVE SSMs can predictively model a regular language iff it’s star-free.
= 2 -Layer SSM predictively models the Flip flop language at arbitrary
lengths. (Solutions were guaranteed with Krohn Rhodes, but not a 2 layer
construction)

» 2 -Layer SSM predictively models Dyck(K, m) with d = O(mlogK)

e Unbounded integer values; Finite precision for fractional components

o Dyck-1, Shuffle-Dyck-k, n-ary Boolean Expressions, a"b", a"b"c", a"b"c"d" are
\ predictively modeled by an SSM /
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SSMs can model hierarchical structure of language

‘;; ' Why is counting so hard? 2

Recapping our takeaways

| KNOW MY

It would be easier to theoretically predict
failures & abilities LLMs based on SSMs
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