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Background on Uncertainty Quantification



Why we need to estimate uncertainty of model predictions?

Consider we have a trained neural network model for binary classification

P(y=1|x) =0.2
Yirue = 0




Why we need to estimate uncertainty of model predictions?

Consider we have a trained neural network model for binary classification

P(y=1|x) = 0.2 P(y=1|x) =0.8
Yerue = 0 Verye =177




Background

> Uncertainty Quantification (UQ) is a subfield of
machine learning that seeks to model the degree to
which model predictions can be trusted.

- ldeally, the instances with the most uncertain
predictions should correspond to errors.

Larson et al. An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction. EMNLP-IJCNLP 2019.

@ What is my balance?

You have $1,847.51
across your 3 accounts.

v

How are my sports teams
doing?

Your last payday was on
the 1st of November.

X

Who has the best record
in the NBA?

Sorry, | can only answer
questions about banking.

v/
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L L M S H a I I u Ci n ate Tell me about prof. Alexander Panchenko

O £ Edit

@ Professor Alexander Panchenko is a prominent researcher in the fields of Natural Language
Processing (NLP), Computational Linguistics, and Artificial Intelligence (Al). Here's an overview of

his background and contributions:

-~ LLMs deliver impressive performance, yet still
generate hallucinations and incorrect facts.

Academic and Professional Background

o Current Position:

9 S uc h errors h | n d er th ei ruse | n Safety_c ritica | Associate Professor at Skolkovo Institute of Science and Technology (Skoltech), Moscow,
Russia.
d p p I |Cat| ons. Research Scientist at Huawei Noah's Ark Lab (2021-2023).
Previously worked at the University of Hamburg (Germany) and University of Louvain
(Belgium).
» Education:
English (detected) v 2 Russian v Automatic ¥ PhD in Computer Science from the University of Lorraine (France) and University of Trento
(ltaly).
The following is a list of the most important information about X MpumeyvaHune. ; f . . . . .
MSc in Applied Mathematics and Computer Science from Moscow Institute of Physics and
the situation in the world, and it is important to note that this is
the first time that a person is in the world. Technology (MIPT).
What is the language with the highest number of total speakers in
the world that is not an official language of the United States?
) P The language with the highest number of total speakers (native + non-native) that is not an official
language of the United States is Hindi.

7 @ ANIRU



Notion of Uncertainty

Uncertainty quantification in deep learning focuses on analyzing and quantifying uncertainty to improve the

reliability of model predictions.

Aleatoric uncertainty: occurs from
ambiguity, randomness, and noise in
data.

Eyke Hillermeier and Willem Waegeman. Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods. 2011.
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Epistemic uncertainty: pertains to a
lack of knowledge about model
parameters



What is Uncertainty?

There is no unified way for specifying uncertainty scores. They can be measured in various ways: distances,
probabilities, entropy, error, etc.

Information theory / Bayesian statistics provides a principled way of measuring uncertainty. It is an entropy of a
probability distribution.



Two Sources of Uncertainty

Upred: = epistemic + Ualeatoric

/] X

H(Y|x,D) = I(Y,W|x,D) + E,,_,wp)[H(¥|x,w)]

Aleatoric Epistemic Predictive
Raw data (200 samples) Uncertainty uncertainty uncertainty
L - -
PN
- ..
. ° .

’dP".'J;v.
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Applications of Uncertainty

Uncertainty quantification methods play a crucial role in various practical applications:

> Out-of-distribution (OOD)

: —> Selective prediction > Active learning
detection
Retrain
1.00 Machine learning
model
0.98
E 0.96 - - Labeled
9 training Unlabeled pool
E 0.94 ==
<
0.92
0.90

0.2 0.4 0.6 0.8 1.0 Oracle (e.g. human annotator) Select SRk

Rejection rate

1 (@) NIRU
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UQ for Text Classification Models



Problem Statement

Selective classification aims not only to make the
prediction for a given instance but also to estimate the
model’s uncertainty associated with that prediction.

Applications:
-> hate speech detection in social networks

> medical diagnostics

Already two days, | felt
very bad, | have a cough,
fever and chills, today | feel
muscle aches

When | taste this pepper |
just burned and lose a
sense of smell and taste.

J

The dashboard is burning
red, the engine
temperature is over 100 °C

J

Neural
Network

Neural
Network

Neural
Network

3



Softmax Response

Softmax response (SR) is a trivial baseline for UE a trained model that uses the probabilities generated via the
output softmax layer of the neural network. The smaller this maximum probability is, the more uncertain model is:

usgr(z) =1— rgle%xp(y =c|z),

where - probability of sample  belong to class :
ply=c|x) T y=ceC

1w (@) NIRU



Why Simple Softmax Probabilities are Bad for UQ?

High uncertainty

What we get usually from softmax

Low uncertainty



Why Simple Softmax Probabilities are Bad for UQ?

High uncertainty

L

What we get usually from softmax What we would like to have

Low uncertainty

16
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Deep Ensemble

Consider we have conducted T independent models. We can use the following ways to quantify uncertainty with the
standard Deep Ensemble:

Overhead in:

* memory footprint
* inference time

* training time

Sampled maximum probability (SMP)

T
1
uMpzl—ma,x— ¢
S cGCT;pt,

(4
C
where ptIS the probability of the class for the t-th stochastic forward pass.

Probability variance (PV)

LG 1G22
= 535+,

where ¢ = %Zpgthe probability for a class averag%d across T stochastic forward
passes. !

UE Scores

Bayesian active learning by disagreement (BALD)

c
— 1
ugaLp = — Y _p°logp® + T pr log p}
—1

c= c,t

Lakshminarayanan et al. Simple and scalable predictive uncertainty estimation using deep ensembles. NeurIPS 2017. 17 @ A I : I



Monte Carlo Dropout

Consider we have conducted T stochastic forward passes. We use the following ways to quantify uncertainty with

the standard MC dropout:

Sampled maximum probability (SMP)

usmp = 1 — meaéx— Zpta
c

(4
where ptIS the probability of the class for the t-th stochastic forward pass.

Probability variance (PV)

= 535+,

t=1

where p°= = Z'p the probability for a class averag%d across T stochastic forward
passes.

Bayesian active learning by disagreement (BALD)

UBALD = — ZP logp° + — Zpt log p}

c=1 c,t

Gal et al. Deep bayesian active learning with image data. ICML 2017.

Neural Network

Neural Network

Neural Network

A
\o/e/
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MC Dropout Options in Transformers

1. Replace only For 20 stochastic predictions
Class dropgut b.efore the < 1% overhead in terms
Label classification layer of parameters

(last dropout)

_‘ |
e[ )| [ [T [T ] -

BERT

Eas || E Ey B ser) RS By
S N N N\ e
— o I e T e Wl uiy
W) (B0
l | I
l l
Sentence 1 Sentence 2

Shelmanov et al. How certain is your Transformer? EACL 2021.



MC Dropout Options in Transformers

—
1. Replace only For 20 stochastic predictions ( Add & Norm N
Class dropout before the < 1% overhead in terms _ _____,*
Label classification layer of parameters dropoutin the output ___—| ee
(last dropout) network Forward

— ' § 1
& ][ T ) | U T L - N> Add & Norm

2 dropouts in the

self-attention block a = =rrre
~—>,
BERT SR
A
dropout after the L L_)
embedding layer J

Ec || E Ex || Eser || Ei E, Eo&ho.nal
PN N PN PN AN P ncodmg
5 R N iy I I L
Input
[cLs] W( oK W ( Tok W( [SEP] w ] ToK Embedding
2. Replace all dropouts
l I I I with MC dropout layers 1
Sentence 1 Sentence 2 For 20 stochastic predictions Inputs

~ 1900% overhead

0 (&) NIRU



Mahalanobis Distance

Mahalanobis distance (MD) is proportional to the negative log-likelihood of a multivariate normal distribution, up
to an additive constant:

upyp = min (h; — p,C)TE_l(hZ- — le),
ceC

where h;s a hidden representation of a i-th instance, s a cerl4coid of a class , and s a c«crariancy matrix for

hidden representations of training instances.
[ /\N(h(w)mc, )
Q He AuMD(mtest)
% —

@
Ltest

centroids

training data

Lee et al. A simple unified framework for detecting outof-distribution samples and adversarial attacks. NeurlPS 2018. 21 @ A I ? I



Deep Deterministic Uncertainty

Up (x) = p(h(x) | y = c)p(y = c)

ceC

p(h(x) |y =c) ~ N(h(x) | pe, Xc)

Mukhoti et al. Deep deterministic uncertainty: A new simple baseline CVPR 2023.

min Hg[Z
76 J_e[ ]
5
O 2]
-5 ::3
-10
—-10 -5 0 5 10
X

GMM with 3 components fitted to a synthetic dataset
with 3 different classes
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Robust Density Estimation

Idea: Removing outliers from the training dataset for parameter estimation in
MD.

i 1MLE/ MCD Estimation (SST2-BERT)
Method: o

Do not share the covariance matrix between classes

Use Minimum Covariance Determinant (MCD) to find a subset of instances Contour
that minimizes the determinant of X for each individual class X — MLE
—0 ] MCD
PCA with an RBF kernel. uirt))( 0.5
1

This results in a robust covariance estimation consisting of centered data
points rather than outliers.

» (@) NIRU



Motivation

Goal: build a reliable selective classification methods for ambiguous text classification tasks.

Classification mistakes usually arise from two sources:
—> 0OO0D areas — can be detected with epistemic UQ methods
- Ambiguous in-distribution (AID) areas — can be detected by aleatoric UQ

In-distribution (ID)
instances

Out-of-distribution

Decision boundary

Ambiguous in-distribution
(AID) instances



Motivation

Following the Bayesian approach, the total uncertainty of a model prediction of an instance
dataset is computed as follows:

Ur(x) = Ua(x) + Ug(x),

where Ua(x)an aleatoric uncertainty and is Ug(x)stemic uncertainty.

Methods for quantifying epistemic uncertainty:
Mahalanobis Distance (MD)
Robust Density Estimation (RDE)

Deep Deterministic Uncertainty (DDU)

Methods for quantifying aleatoric uncertainty:
Softmax response (SR)

Entropy

for the given@aining
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Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset D = {(xi,4:)}i r-parameters , 10min; Omax, @0iNt

Output: Uncertainty estimates Unuq(x)

Decision boundary

Vazhentsev et al. Hybrid Uncertainty Quantification for Selective Text Classification in Ambiguous Tasks. Findings of ACL 2023.

, ranking functxon

R(u, D)



Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset D = {(xi,4:)}i r-parameters , 10min, Omax, @0int , ranking funcixon R(u, D)

Output: Uncertainty estimates Unuq(x)

IDset: Dip = {(X4,¥i) : (X4,%i) € D, Ur(%;) < Omin}

Decision boundary

Vazhentsev et al. Hybrid Uncertainty Quantification for Selective Text Classification in Ambiguous Tasks. Findings of ACL 2023. 27 @ A I ? I



Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset D = {(xi,%)}iir-parameters , 10min, Omax, @0int , ranking functxon R(u, D)

Output: Uncertainty estimates Unuq(x)

1. If this point belongs to the AID area: Unuq(x) = R(Ua(x), D)

IDset: Dip = {(X4,¥i) : (X4,%i) € D, Ur(%;) < Omin}

Decision boundary

AID instances:
Ua (X) > 5max

Vazhentsev et al. Hybrid Uncertainty Quantification for Selective Text Classification in Ambiguous Tasks. Findings of ACL 2023. 28 @ A I ? I



Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset D = {(xi,%)}iir-parameters , 10min, Omax, @0int , ranking functxon R(u, D)
Output: Uncertainty estimates Unuq(x)
1. If this point belongs to the AID area: Unuq(x) = R(Ua(x), D)

2. If this point belongs to the ID area, but not to AID: UHUQ(X) = R(Ua(x), Dmp)

IDset: Dip = {(X4,¥i) : (X4,%i) € D, Ur(%;) < Omin}

Decision boundary

AID instances:
Ua (X) > 5max

Vazhentsev et al. Hybrid Uncertainty Quantification for Selective Text Classification in Ambiguous Tasks. Findings of ACL 2023. 29 @ A I ? I



Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset D = {(x;,y:)}i. r-parameters , 10min, Omax, @0int , ranking funcixon R(u, D)
Output: Uncertainty estimates Unuq(x)

1. If this point belongs to the AID area: Unuq(x) = R(Ua(x), D)

2. If this point belongs to the ID area, but not to AID: Unuq(x) = R(Ua(x), D)

3. Otherwise: Unyq(x) = (1 — a)R(Ug(x), D) + aR(Ux(x), D)

IDset: Dip = {(X4,¥i) : (X4,%i) € D, Ur(%;) < Omin}

-———a

Decision boundary

AID instances:
Ua (X) > 5max

Vazhentsev et al. Hybrid Uncertainty Quantification for Selective Text Classification in Ambiguous Tasks. Findings of ACL 2023. 30 @ A I ? I



Experimental Setup

> Models: ELECTRA, BERT 0.025 |

)
o o
[l N
(9] o

Cumulative risk
o
o
=
o

-~ Metrics: AUC-RC{, (area under the risk coverage curve) .

0.000 ~

7

0.0 0.2 0.4 0.6
Coverage

- Datasets:

> Paradetox, ToxiGen, Jigsaw, Twitter, ImplicitHate (Toxicity Detection)
> SST-5, Amazon (Sentiment Analysis)
- 20 News Groups

31

0.8

1.0
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Toy Example

SR MD RDE
o~ m . ﬂu
o,

$
. Entropy HUQ-MD (ours) HUQ-RDE (ours)

- HUQ correctly identifies both regions with untrustworthy predictions: the area away from the training data
distribution and the area around the model decision boundary.

2 (@) NIRI



Results

Hybrid uncertainty quantification methods are usually the best or the second best after Ensemble. HUQ

outperforms this baseline on Paradetox and SST-5.

Paradetox

: I

:

ToxiGen

_Jigsaw
’!F
o
o [T TRHH—

3 R
i,

Twitter
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o I

> RERR

+ ([ITTHH—

3

T
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1 R
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Results: Medical Diagnostics Application

HUQ-2 and HUQ are consistently the best or the second best after MC dropout. While MC performs poorly on
MIMIC-IV, HUQ-2 significantly outperforms all other methods

0.94

0.92

Accuracy
o
O
o

0.88

0.86

[T

SR

MD

DDU

RDE

MC (PV)
HUQ-MD
HUQ2-MD

0.0

0.1 0.2 0.3
Rejection rate

Mortality prediction

0.4

0.5

0.650
— SR
—— MD
6.6251| <. npy
— RDE
0.6001 —— MC (SMP)
—— HUQ-RDE
0.575 HUQ2-RDE
>
(@]
€ 0.550
(&}
(9}
<0.525
0.500
0.475
0.450 e

F1-micro

0.0 0.1 0.2 0.3 0.4 0.5
Rejection rate

OV medical code prediction

0.76{|— SR
— MD
— DpDU
—— RDE

0.75] — mc (pv)

HUQ-DDU
HUQ2-DDU

o
N
~

o
N
w

0.72

0.71

0.0 0.1 0.2 0.3 0.4 0.5
Rejection rate

MIMIC-IV medical code

prediction
w (@) NIRI
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UQ for Text Generation Models



Uncertainty as a Universal Hallucination Detector

- Existing truthfulness assessment methods rely on
external knowledge or large model ensembles, leading ~ prompt:
to high computational costs and limited applicability.

External verifier:
Fact-checker, RAG, etc.

—>

Versacity score:

V=0.15

External knowledge source:
search index, KB, another LLM

36
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Uncertainty as a Universal Hallucination Detector

Existing truthfulness assessment methods rely on
external knowledge or large model ensembles, leading ~ prompt: Answer:
to high computational costs and limited applicability.

External verifier: Versacity score:
—> y

Fact-checker, RAG, etc. V=0.15

External knowledge source:
search index, KB, another LLM

Uncertainty quantification (UQ) Offers a promising ........................................................................
alternative, but it faces significant challenges in text Prompt Answer:
generation.

ncertainty score:

. - U
‘ Uncertainty estimator ——>» U =090

1

LLM capabilities:
logits, multiple samples,
hidden states, attention weights

7 (@) NIRI



Reliability task: Selective generation

Goal: Deliver answers only when the LLM is confident.

Selective rule:
(Q: “Who wrote 19847" | [Q: “Capital of Canada?"j

v v
answer, Ux,y)<rt [A: George Orwell] [A: Torontoj

“I don’t know”, Ux,y) >t

By rejecting uncertain answers, we increase [Shown to user] (' don’t k“OWj
performance for remaining answers.

output = {

(@) NIRI



Reliability task: Claim-level hallucination detection

If U(x,y,c) = 1, highlight claim ¢ € C(y) of LLM as potentially erroneous

Tell me a bio of Madonna.

Madonna is an American singer, songwriter, actress, and business-
woman. She was born on August 16, 1958, in Bay City, Michigan, and is
best known for her provocative image and music. Madonna has sold over 300
million records worldwide, making her one of the best-selling music artists
of all time. She has won numerous awards, including 20 Grammy Awards, a
Golden Globe Award, and an Emmy Award. Madonna is also known for her
philanthropic work and her activism on various social issues.

39 @ NI



Uncertainty Quantification Methods for LLMs

Unsupervised methods: extract information from

logits of LLM or multiple generations, ask LLM about
its confidence.

Weaknesses: limited effectiveness and
computationally expensive.

Low uncertainty

LLM

The capital of France is Paris.

France's capital city is Paris..
Paris is the capital of France.

Paris.

High uncertainty
LLM
The capital of France is Lyon.
France's capital city is Marseille.

The capital of France is Paris.

| think it's Bordeaux.

o (@) NIRI



Information-based Methods

For a given:
X - input sequence (prompt)

0 - model parameters

We can compute:
Probability of the generated sequence: P(y | x,0) =
Maximum Sequence Probability (MSP): Unsp(y | x,0

Perplexity or Normalized Sequence Probability (NSP):

=

=

—

Py | y<1,x%,6)

1_P(y|x19)

1
UPerplexity (X) — exXp {flog P(y ‘ X)}

41
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Sampling-based Methods

Best-of-N

For a given:
X - input sequence (prompt)

® - model parameters

We can generate:

<2 Y1,V9, .-, YN - N sequences generated via sampling or beam search

Uncertainty score: quantifying consistency across multiple generations

42

Beam Search
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Sampling-based Methods

> Construct a matrix S representing similarities between responses based on some semantic or lexical similarity
measure, e.g. NLI entailment score or ROUGE

The capital of France is Paris.- 1.00 0.92 0.90
Paris is the capital of France.- 092 1.00 0.89

France’s main city is Paris. - 0.90
The capital of France is Lyon.

Lyon is the capital of France

s (@) NIRU



Lexical Similarity

Lexical Similarity: compare samples via lexical metrics, e.g., ROUGE or BLUE

Uncertainty is the average lexical similarity between the generated answers

Utoesin(6) = 1= 5 30 D s(y',¥)

=1 j=1

44
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Graph-based Uncertainty Measures

Sampled sequences are nodes, pairwise similarities are edges

Then similarity matrix S becomes an adjacency matrix of the graph

Degree matrix: Dy = i&@rmalized Graph Laplacian: L=1-— D_%SD_%
Compute uncertainty b;_alnalyzing the graph connectivity:

1. Degree Matrix :

Upey = 1 — trace(D)/K?

2. Sum of Eigenvalues of the Graph Laplacian:

K
UEz’gV = Z max (0, 1 — /\k)
k=1

45
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Monte-Carlo Sequence Entropy

Monte Carlo approximation of sequence entropy with N samples:

To ensure balanced contributions to the overall uncertainty from sequences of different lengths, we can
employ a length-normalized version:

Unmonsg(X _——ZlogPy | x)

46
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Semantic Entropy

Problem of MCSE: semantic equivalence of different answers

Likelihood Semantic likelihood Answer  Likelihood Semantic likelihood

Answer

s > secP(s | ) S p(s| ) Y osceP(s | )
Paris 0.5 Paris 0.5 } 0.9
Rome 0.4 It’s Paris 0.4 '
London 0.1 London 0.1 0.1
Entropy 0.94 Entropy 0.94 0.33

Idea: Group the answers into clusters based on their meaning

over semantic clusters:

1 &, .
Usg = —ﬁmz_:llogp(ci | x)

P(Cy, | x) /anY caRiglata the entropy

yeln,

47



CoCoA: Bridging Confidence and Consistency

A more flexible approach to confidence estimation can be achieved by combining various information-
theoretic confidence measures with consistency analysis.

CoCoA proposes a multiplicative form of this combination:

CCoCoA(y*a X) — Cinf(y*a X) ’ Ccons(y*a X)

Cins can be any information-theoretic confidence estimate, such as sequence probability, perplexity, mean
token entropy etc., while C,,,, is defined as:

Ccons(y ,X) - N Zi:l S(y Y )

s (&) NIRU



Reflexive

Black-box:

Provide your best guess and the probability that it is correct
(0.0 to 1.0) for the following question. For example:

Guess: <most likely guess>
Probability: <the probability between 0.0 and 1.0 that

your guess is correct>

Question: Who was the first president of the United States?

Relies on the ability of the LLM to assess its own
uncertainty

White-box:

Question: Who was the first president of the United States?
Proposed Answer: George Washington was the first president.

Is the proposed answer:
(A) True

(B) False
The proposed answer is:

Resulting confidence is based on the probability of
the token encoding “True”:

Uprrue @) =1 — P(“True” | x,y)

o (@) NIRI



ldentifying Hallucination-Associated Patterns in Attention Maps

Idea: identify patterns in attention maps that reveal hallucinations.

Question: What is King Henry holding in the Portrait of Henry VII?
Correct Answer: gloves and dagger.

LLM Answer (Llama-3.1 8b): King Henry is holding a falcon in the Portrait of Henry VII.

50
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ldentifying Hallucination-Associated Patterns in Attention Maps

—> Most attention heads show low weights

—> The 25th head: high attention for correct tokens, low for the hallucinated token

Question: What is King Henry holding in the Portrait of Henry VIII?

ro0.4

0.3

Tokens in Answer

0 5 10 15 20 25 30
Attention Head



Recurrent Attention-based Uncertainty Quantification

1. Select the most informative attention head per layer:

1 L
h(y) = arg max - > al

: RAUQ

52
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Recurrent Attention-based Uncertainty Quantification: RAUQ

1. Select the most informative attention head per layer:

1 L
h(y) = arg max - > al

2. Compute token-level layer-wise recurrent confidence score:

ci(y;) = P(y; | x), ifi=1,
Wi = a P(yi | y<i,x) +(1—a)- a‘é,?il Ci(yi-1), ifi>1.

53
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Recurrent Attention-based Uncertainty Quantification: RAUQ

1. Select the most informative attention head per layer:

1 L
h(y) = arg max - > al

2. Compute token-level layer-wise recurrent confidence score:

P(yi ‘ X), ifi = L,

i) = {0‘ - Pyi | y<i,x)+ (1 —a) - a’i,?i1 -ci(yi-1), ifi>1.

3. Aggregate the token-level layer-wise uncertainty scores to the final score:

1 L
Urauq(y) = max [— T Zizl log Cl(’yi)}

54
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Experimental Setup

—> Task: sequence-level selective generation

- Datasets:

- QA with short free-form answers: SciQ, CoQA, TriviaQA, MMLU
- QA with long free-form answers: MedQUAD, TruthfulQA, GSM8k
- Translation: WMT14 Fr-En, WMT19 De-En

> Summarization: XSum, SamSum, CNN/DailyMail

- LLMs: Llama-3.1 8b, Gemma-2 9b, Qwen-2.5 7b, Falcon-3 10B

> Metric: PRR (50% max rejection)

Vashurin et al. Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph. TACL 2025.
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Results

RAUQ consistently outperforms prior methods with minimal compute overhead (<1%)

Best overall robustness across models, tasks, and domains

Llama-3.1 8B Qwen-2.57B Gemma-2 9B Falcon-3 10B
UQ Method QA Summ MT | QA Summ MT | QA Summ MT | QA Summ MT | Mean
MSP 347 296 397 | 329 151 369 | .361 334 381 | .345 A77 333 318
Perplexity 347 419 380 | .343 254 406 | .383 375 405 | .356 180 439 | .357
CCP 285 307 340 | 271 186 327 | .329 345 320 | .299 128 287 .285
Attention Score 014 126 178 | .038 130 | 142 | 064 103 146 | .054 J92 089 | .106
Focus 320 335 361 | 264 186 380 | 416 340 385 | 313 139 362 | 317
Simple Focus 342 306 415 | 342 136 399 | 396 322 422 | 351 .095 .385 326
DegMat NLI Score entail. 306 118 239 | 356 154 275 | 337 138 259 | 352 132 222 | 241
Ecc. NLI Score entail. 274 -.008 .284 | .322 002 306 | .298 .020 .290 | .327 038 281 203
EVL NLI Score entail. 293 A14 217 | 349 154 245 | 332 133 252 | 351 135 206 | .232
Lexical Similarity Rouge-L | .250 131 324 | 334 131 327 | 306 161 342 | 285 .084 275 246
EigenScore 232 078 285 | .298 061 302 | 267 106 226 | 247 051 236 | .199
LUQ 287 173 214 | 351 196 213 | 344 206 259 | .335 21 196 | 241
Semantic Entropy 254 A17 0 315 | 281 092 317 | .291 126 337 | 320 133 291 .240
SAR 310 170 370 | 351 153 393 | 361 235 414 | 334 094 337 294
Semantic Density 330 153 264 | 352 110 291 | 375 167 255 | .358 141 280 | .256
RAUQ 396 428 452 | 358 213 438 | 421 392 473 | 392 181 465 | .384
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Uncertainty Quantification Methods for LLMs

Supervised methods: train a lightweight classifier on
the information from the internal layers of LLMs to
predict hallucinations.

Weaknesses: overfit to a particular domain and require
annotated training data.
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Statement accuracy prediction based on language model activations:

SAPLMA

Idea: train on decoder layer activations to predict when LLM is uncertain.

Forced decoding: Grace Hopper invented the COBOL
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Supervised average token-level relative Mahalanobis distance

Idea: aggregate token-level Mahalanobis distances to the cluster of “good” answers across all layers.
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Uncertainty Quantification Methods for LLMs

Supervised methods: train a lightweight classifier on Text Task
. . . Prediction | Classifier
the information from the internal layers of LLMs to

predict hallucinations. 3 '
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Conditional Dependency of Generation Steps

Problem: LLMs provide the conditional probability distribution, assuming all previous tokens are correct.

Uncertaint Quality
Y i
|@ Spanish is the language with the highest number of total speakers in the world that is not an official language of the U.S. Metric

Foren e, -«1 0 00 0101 1 BE R o005 oooos
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Conditional Dependency of Generation Steps

Problem: LLMs provide the conditional probability distribution, assuming all previous tokens are correct.

P(.yf | y<f7x)
We need the probability that does not depend on previously generated tokens:

P(yi | x)

Toy simplification (1-step dependency): assume and LLM generates only tokens that are true
(“T”) or false (“F”). P(yi | y<i) = P(yi | yi-1)

P(yi=T) = P(yi=T | yi-1=T) P(yi-1=T)
+ P(yi=T | yi-1=F)(1 — P(yi-1=T))

2 (@) NIRI



Trainable Attention-based Dependency (TAD)

Idea: attention implicitly encodes recurrent conditional dependency between generation steps, which we can learn.

Cly;) = ?(P(yi
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TAD: Inference Scheme

—> TAD leverages the uncertainty from the previous step using a trainable model based on attention, resulting in a

high overall uncertainty in the generated answer.

attention; e k:;‘--i:; Uncertainty Quality
Spanish is the language with the highest number of total speak‘ér‘smkthe world that is not an official language of the U.S. Metric
LLM Output
Token Prob. - .._‘ I I I ... I I I .. ‘ e e I I I 0.05 0.0005
TAD (Ours] J=CT R
pe e ~ NE ETEm. ...  Em E.. ... .%...... B«aa o9
i=1 \ -3 X
Tt~ P(t; = True) = C(P(t;|t<;), P(ti-1 = True), attention;))  --------- —emmetT
64



Experimental Setup

- Models: Llama-3.1 8b, Gemma-2 9b, Qwen-2.5 7b
-> Metrics: Prediction Rejection Ratio (PPR)

- Datasets:

- QA with short free-form answers (SciQ, CoQA, TriviaQA, MMLU)
- QA with long free-form answers (MedQUAD, TruthfulQA, GSM8k)

> ATS (XSum, SamSum, CNN/DailyMail)
- MT (WMT19 De-En)

- UQ Baselines:

- Information-based methods (MSP, Perplexity, CCP)
- Sampling-based methods (black-box methods, LexSim, Semantic Entropy, SAR)
> Supervised methods (Factoscope, SAPLMA, Sheeps)

>
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Results: In-Domain Performance

TAD significantly outperforms other supervised and unsupervised methods across various tasks and models.

UQ Method XSum SamSum CNN WMT19 | MedQUAD | TruthfulQA CoQA SciQ TriviaQA | MMLU | GSM8k | Mean | Mean
AlignScore | AlignScore | AlignScore | Comet | AlignScore | AlignScore | AlignScore | AlignScore | AlignScore | Acc. Ace. PRR | Rank
MSP .077 .012 .339 451 .030 -.088 291 551 .610 .654 268 291 | 1291
Perplexity 237 .250 172 466 131 274 270 .385 .601 400 456 331 | 1045
Mean Token Entropy .233 .280 .149 475 143 .356 263 342 .603 225 469 322 | 10.55
CCP .240 .025 .365 .388 .015 -.104 215 468 .596 412 281 264 | 14.36
Simple Focus .109 .116 191 496 .021 .093 321 .536 .620 \ 550 310 306 | 11.55
Focus .209 .144 110 452 123 .189 249 462 .568 .037 273 256 | 14.55
Lexical Similarity Rouge-L 122 .057 122 .370 .075 .159 297 .507 531 274 511 275 | 14.00
EigenScore .077 -.010 .073 374 .018 -.018 281 510 500 243 537 235 | 16.18
EVL NLI Score entail. .139 .145 .068 .294 122 306 329 519 571 236 372 282 | 13.09
Ecc. NLI Score entail. -.047 .032 -.015 .368 .107 146 294 535 .543 237 386 235 | 1545
DegMat NLI Score entail. 138 145 075 332 122 .300 329 .540 574 235 402 290 | 12.36
Semantic Entropy .016 .074 .106 .366 .073 .087 265 491 536 .165 .380 233 | 17.18
SAR 128 .129 .107 445 .088 185 318 .526 .585 288 459 296 | 12.09
LUQ 228 170 131 265 .096 322 337 449 .580 321 331 294 | 12.18
Semantic Density .080 122 213 .358 .095 .300 .386 514 .603 203 381 296 | 12.27
Factoscope 185 -.032 .001 .069 447 137 122 345 406 ‘ .844 -.101 220 | 17.27
SAPLMA .245 326 .009 .345 .018 321 .001 374 497 418 440 272 | 14.09
MIND 220 133 263 365 517 314 346 496 .608 .883 738 444 7.36
Sheeps 361 313 258 487 391 476 357 487 .663 \ .883 710 1490 4.73
LookBackLens 436 .386 369 .539 497 485 352 600 585 873 627 523 3.55
SATRMD 338 322 254 525 362 254 315 547 .623 \ .885 566 454 5.55
TAD 460 416 450 553 583 500 407 563 665 \ .893 \ 701 563 | 1.27
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Results: Out-of-Domain Performance

Supervised methods suffer a significant performance drop on out-of-domain data.

TAD is the best-performing method on out-of-domain QA datasets.

CoQA SciQ TriviaQA | MMLU | GSMS8k | Mean
UQ Method AlignScore | AlignScore | AlignScore | Acc. Acc. PRR
MSP 262 459 527 S35 310 419
SAR 297 439 552 275 .320 377
Semantic Density 380 448 S71 237 197 .366
Factoscope 016 .055 161 078 .049 072
SAPLMA -.030 .199 -.112 -.089 -077 | -.022
MIND .044 153 237 252 230 183
Sheeps .092 422 295 425 323 312
LookBackLens .079 365 304 422 .166 267
SATRMD 247 .349 469 205 311 316
TAD 283 529 565 S12 278 434
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Conclusions

The key findings demonstrate the significant potential of UQ methods to enhance the model’s

predictions in every NLP task:

Uncertainty quantification is a crucial component of ML-based systems.

For practical purposes in classification tasks, consider density-based UQ methods like DDU,
MD, RDE, etc.

For ambiguous datasets, consider using hybrid uncertainty quantification, e.g. DDU + Entropy.

For LLMs, supervised methods achieve state-of-the-art results for in-domain but experience a
significant drop in performance when applied to out-of-domain.

Attention matrices provide valuable information into the truthfulness of generations.

Not all methods are applicable for claim-level UQ.
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