

Оценка неопределенности в NLP: от классификации к большим языковым моделям

Артём Важенцев
Научный сотрудник AIRI

Related Material

→ Tutorials:

- Uncertainty Estimation for Natural Language Processing. Adam Fisch, Robin Jia, Tal Schuster. COLING-2022.
- Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning. Dustin Tran, Balaji Lakshminarayanan, Jasper Snoek. NeurIPS-2020.
- Uncertainty Quantification for Large Language Models. Artem Shelmanov, Maxim Panov, Roman Vashurin, Artem Vazhentsev, Ekaterina Fadeeva, and Timothy Baldwin. ACL 2025

→ Workshops:

- UncertaiNLP @ EACL-2024 & EMNLP-2025
- QUESTION @ ICLR-2025

- **Benchmark:** Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph. Vashurin et al. @ TACL-2025

01

Background on Uncertainty Quantification

Why we need to estimate uncertainty of model predictions?

Consider we have a trained neural network model for **binary classification**

$$P(y = 1|x) = 0.9$$
$$y_{true} = 1$$

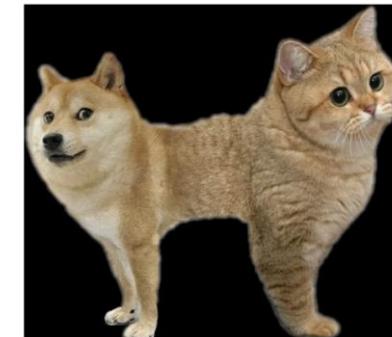
$$P(y = 1|x) = 0.2$$
$$y_{true} = 0$$

Why we need to estimate uncertainty of model predictions?

Consider we have a trained neural network model for **binary classification**

$$P(y = 1|x) = 0.9$$
$$y_{true} = 1$$

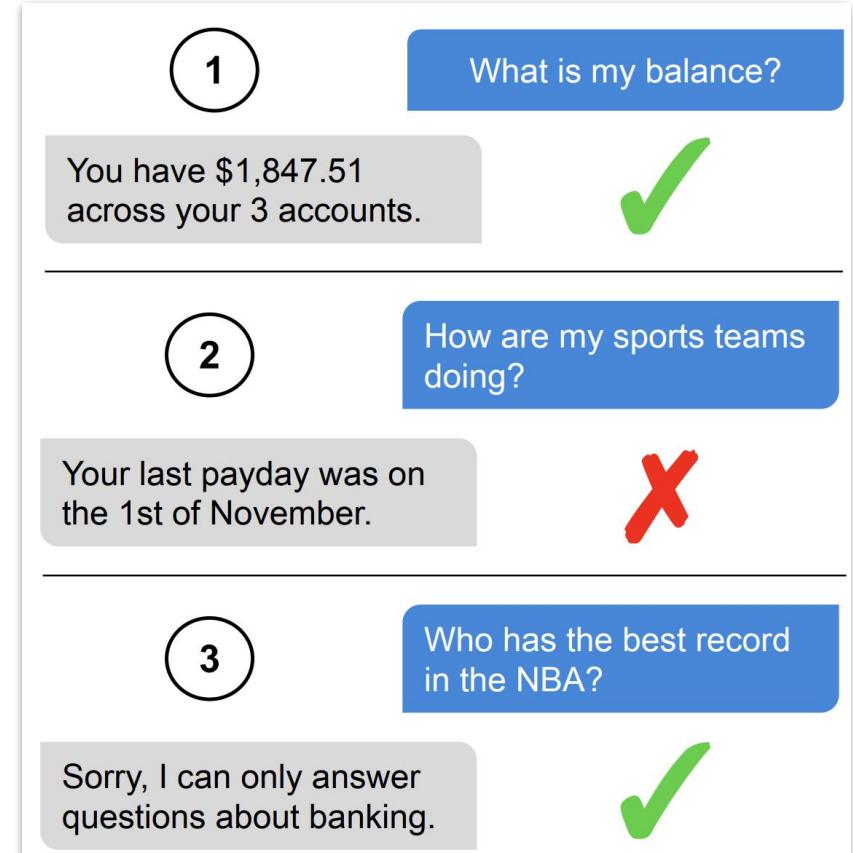
$$P(y = 1|x) = 0.2$$
$$y_{true} = 0$$



$$P(y = 1|x) = 0.8$$
$$y_{true} = ???$$

Background

- Uncertainty Quantification (UQ) is a subfield of machine learning that seeks to model the degree to which model predictions can be trusted.
- Ideally, the instances with the **most uncertain predictions should correspond to errors.**



LLMs Hallucinate

- LLMs deliver impressive performance, yet still generate **hallucinations and incorrect facts**.
- Such errors hinder their use in safety-critical applications.

English (detected) Russian Automatic

The following is a list of the most important information about the situation in the world, and it is important to note that this is the first time that a person is in the world.

П р и м е ч а н и е.

Tell me about prof. Alexander Panchenko

 Professor Alexander Panchenko is a prominent researcher in the fields of **Natural Language Processing (NLP)**, **Computational Linguistics**, and **Artificial Intelligence (AI)**. Here's an overview of his background and contributions:

Academic and Professional Background

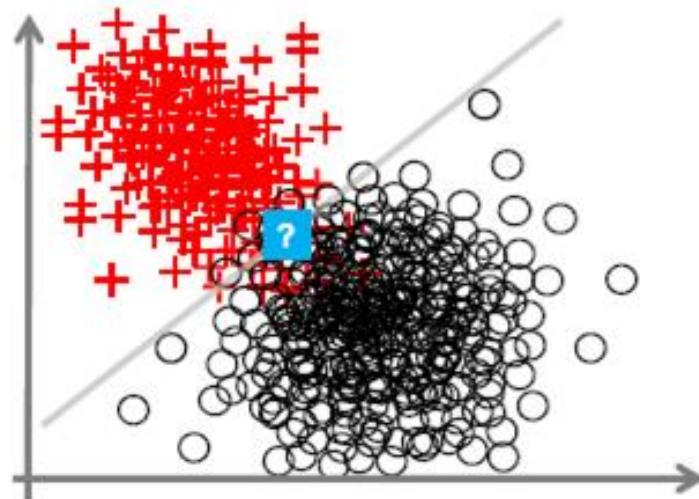
- **Current Position:**
 - Associate Professor at **Skolkovo Institute of Science and Technology (Skoltech)**, Moscow, Russia.
 - Research Scientist at **Huawei Noah's Ark Lab** (2021–2023).
 - Previously worked at the **University of Hamburg (Germany)** and **University of Louvain (Belgium)**.
- **Education:**
 - PhD in **Computer Science** from the **University of Lorraine (France)** and **University of Trento (Italy)**.
 - MSc in **Applied Mathematics and Computer Science** from **Moscow Institute of Physics and Technology (MIPT)**.

What is the language with the highest number of total speakers in the world that is not an official language of the United States?

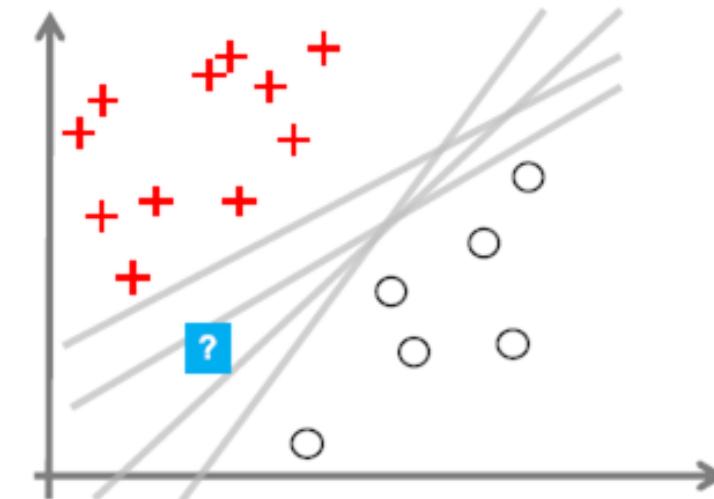
 The language with the highest number of total speakers (native + non-native) that is **not** an official language of the United States is **Hindi**.

Notion of Uncertainty

Uncertainty quantification in deep learning focuses on analyzing and quantifying uncertainty to improve the reliability of model predictions.



Aleatoric uncertainty: occurs from ambiguity, randomness, and noise in data.



Epistemic uncertainty: pertains to a lack of knowledge about model parameters

What is Uncertainty?

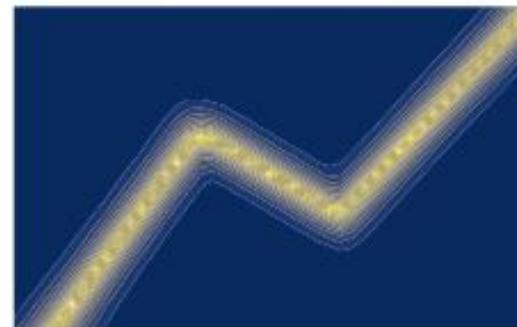
- There is no unified way for specifying uncertainty scores. They can be measured in various ways: **distances, probabilities, entropy, error**, etc.
- Information theory / Bayesian statistics provides a principled way of measuring uncertainty. It is an **entropy of a probability distribution**.

Two Sources of Uncertainty

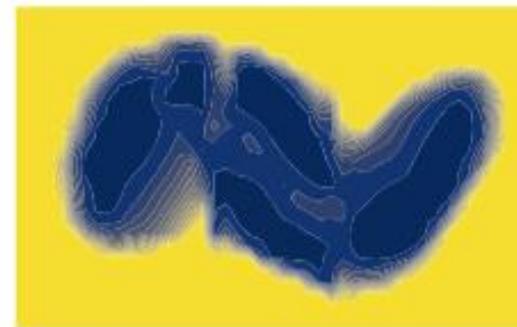
$$U_{pred} \triangleq U_{epistemic} + U_{aleatoric}$$
$$H(Y|x, D) = I(Y, W|x, D) + E_{w \sim p(w|D)}[H(Y|x, w)]$$

Raw data (200 samples)

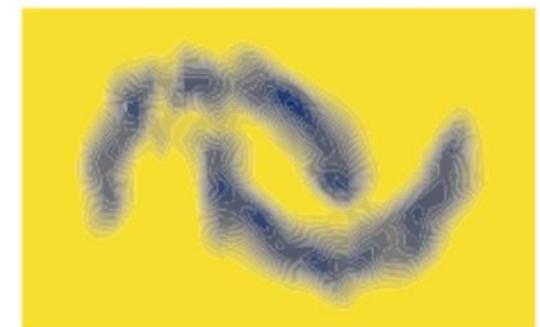
Aleatoric
Uncertainty



Epistemic
uncertainty



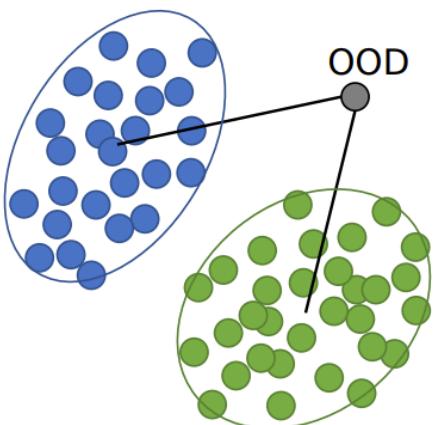
Predictive
uncertainty



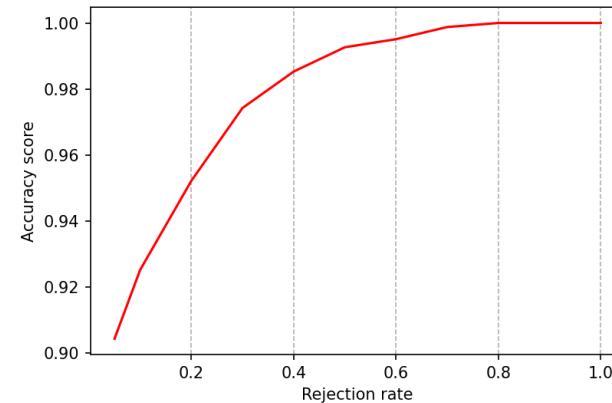
Applications of Uncertainty

Uncertainty quantification methods play a crucial role in various practical applications:

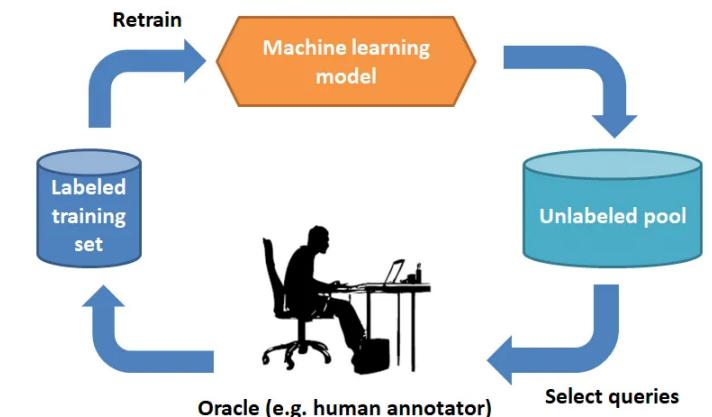
→ Out-of-distribution (OOD) detection



→ Selective prediction



→ Active learning



02

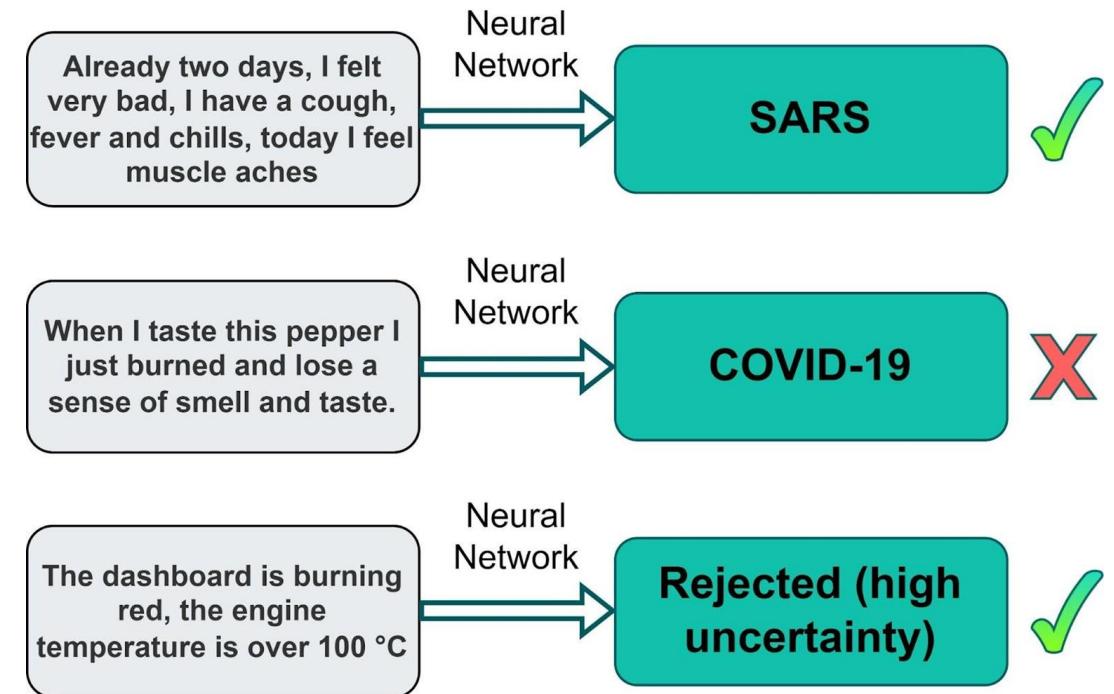
UQ for Text Classification Models

Problem Statement

Selective classification aims not only to make the prediction for a given instance but also to estimate the model's uncertainty associated with that prediction.

Applications:

- hate speech detection in social networks
- medical diagnostics



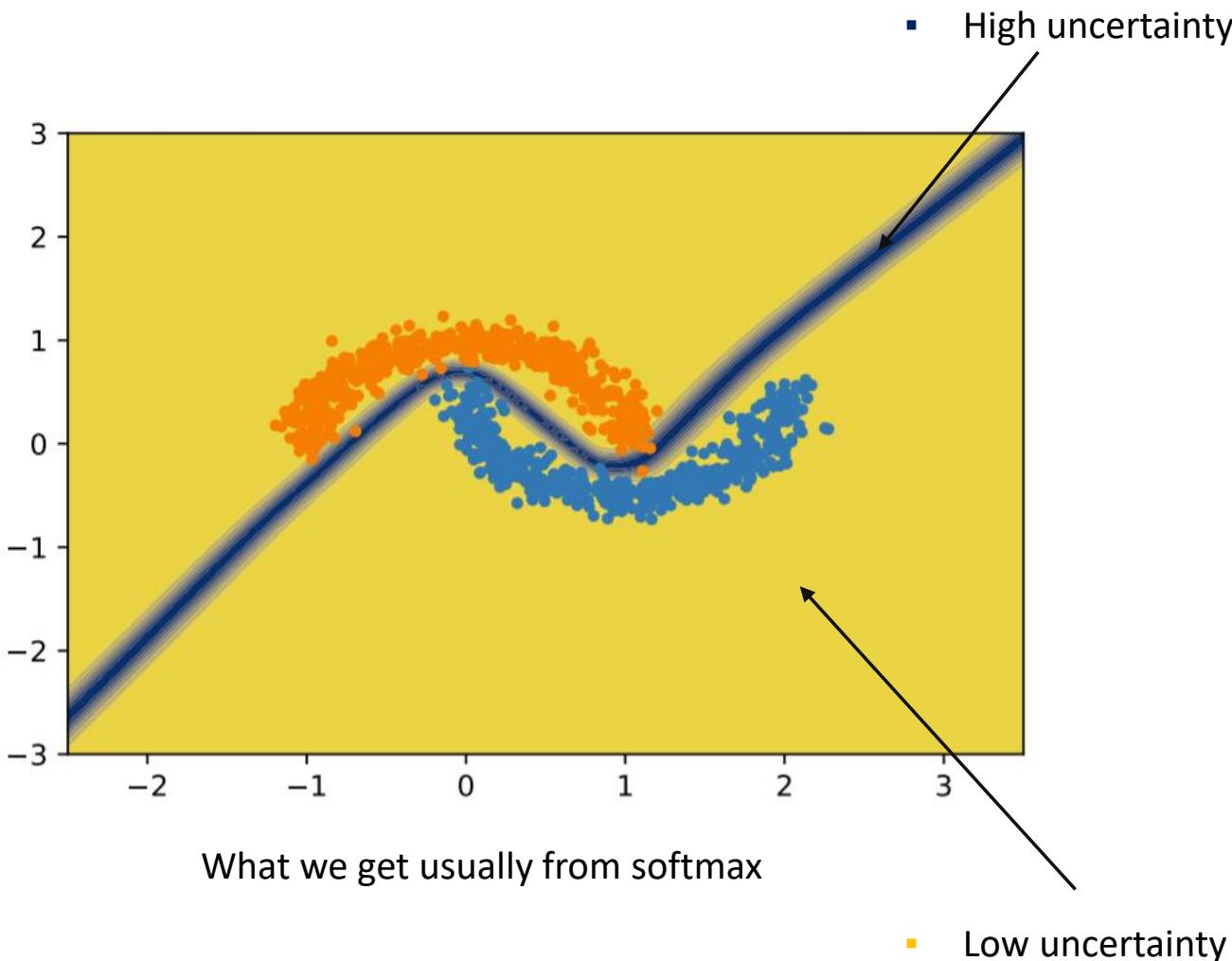
Softmax Response

Softmax response (SR) is a trivial baseline for UE a trained model that uses the probabilities generated via the output softmax layer of the neural network. The smaller this maximum probability is, the more uncertain model is:

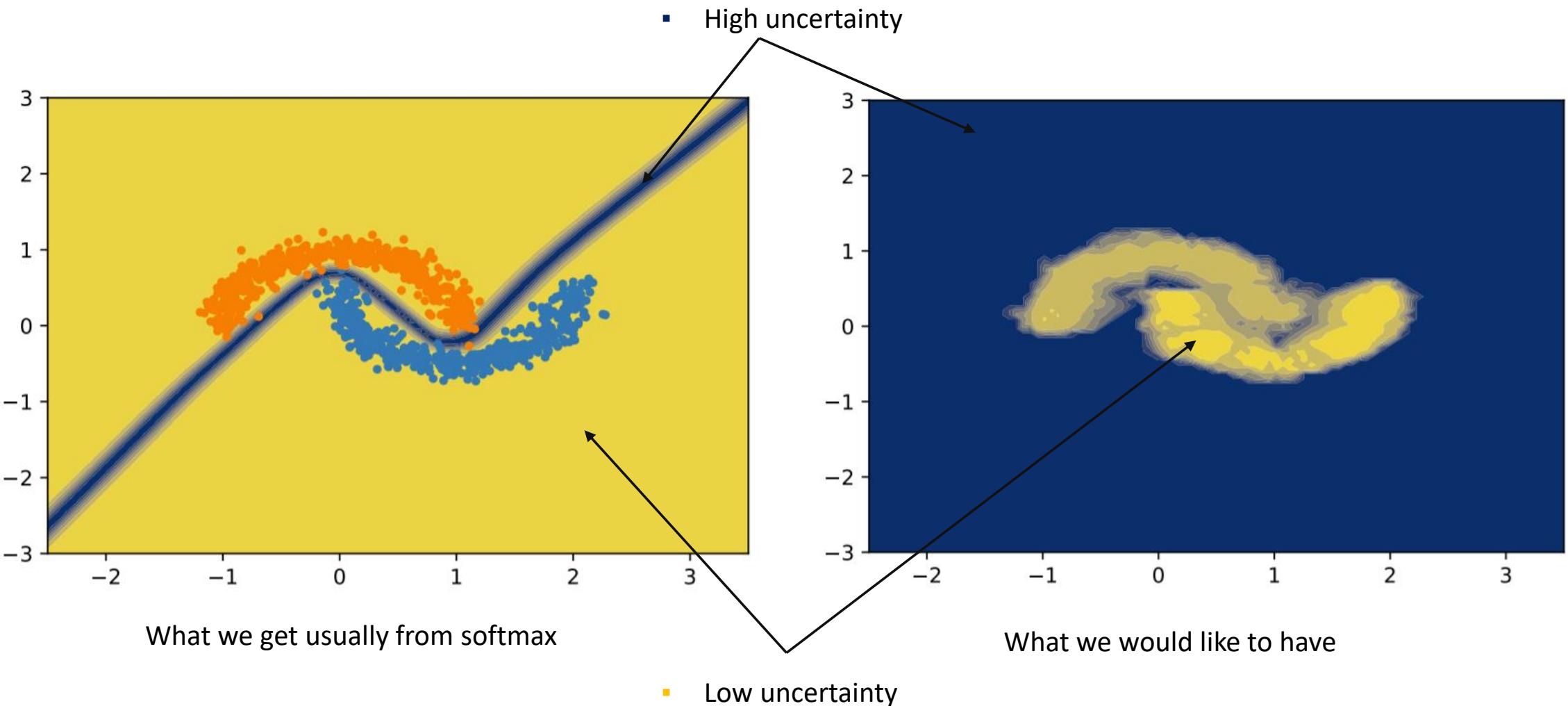
$$u_{SR}(x) = 1 - \max_{c \in C} p(y = c \mid x),$$

where $p(y = c \mid x)$ - probability of sample x belong to class $y = c \in C$.

Why Simple Softmax Probabilities are Bad for UQ?



Why Simple Softmax Probabilities are Bad for UQ?



Deep Ensemble

Consider we have conducted T independent models. We can use the following ways to quantify uncertainty with the standard **Deep Ensemble**:

Sampled maximum probability (SMP)

$$u_{\text{SMP}} = 1 - \max_{c \in C} \frac{1}{T} \sum_{t=1}^T p_t^c,$$

where p_t^c is the probability of the class c for the t -th stochastic forward pass.

Probability variance (PV)

$$u_{\text{PV}} = \frac{1}{C} \sum_{c=1}^C \left(\frac{1}{T} \sum_{t=1}^T (p_t^c - \bar{p}^c)^2 \right),$$

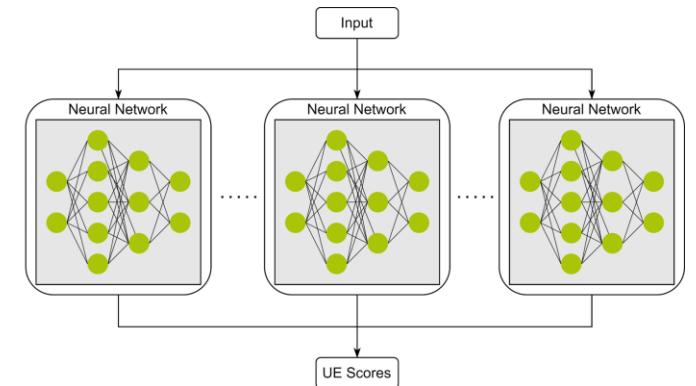
where $\bar{p}^c = \frac{1}{T} \sum_t p_t^c$ the probability for a class c averaged across T stochastic forward passes.

Bayesian active learning by disagreement (BALD)

$$u_{\text{BALD}} = - \sum_{c=1}^C \bar{p}^c \log \bar{p}^c + \frac{1}{T} \sum_{c,t} p_t^c \log p_t^c$$

Overhead in:

- **memory footprint**
- **inference time**
- **training time**



Monte Carlo Dropout

Consider we have conducted T stochastic forward passes. We use the following ways to quantify uncertainty with the standard **MC dropout**:

Sampled maximum probability (SMP)

$$u_{\text{SMP}} = 1 - \max_{c \in C} \frac{1}{T} \sum_{t=1}^T p_t^c,$$

where p_t^c is the probability of the class c for the t -th stochastic forward pass.

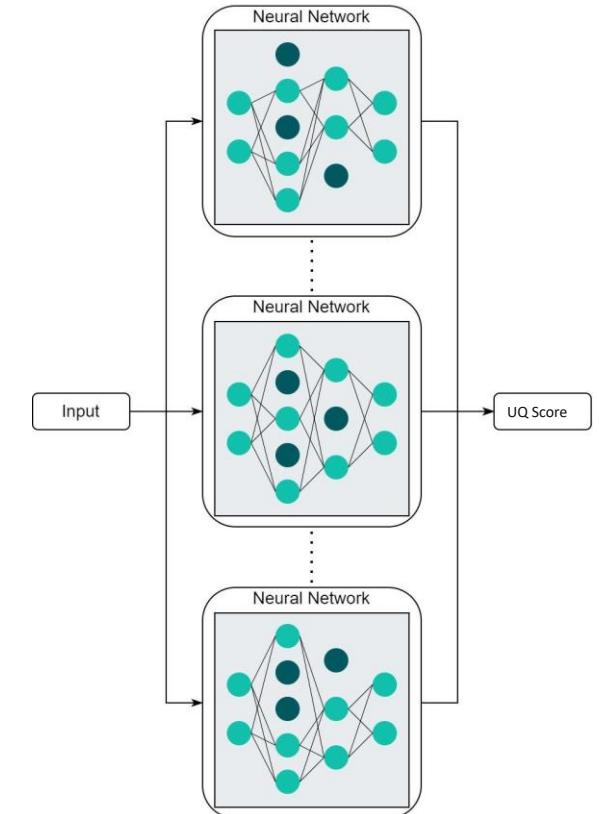
Probability variance (PV)

$$u_{\text{PV}} = \frac{1}{C} \sum_{c=1}^C \left(\frac{1}{T} \sum_{t=1}^T (p_t^c - \bar{p}^c)^2 \right),$$

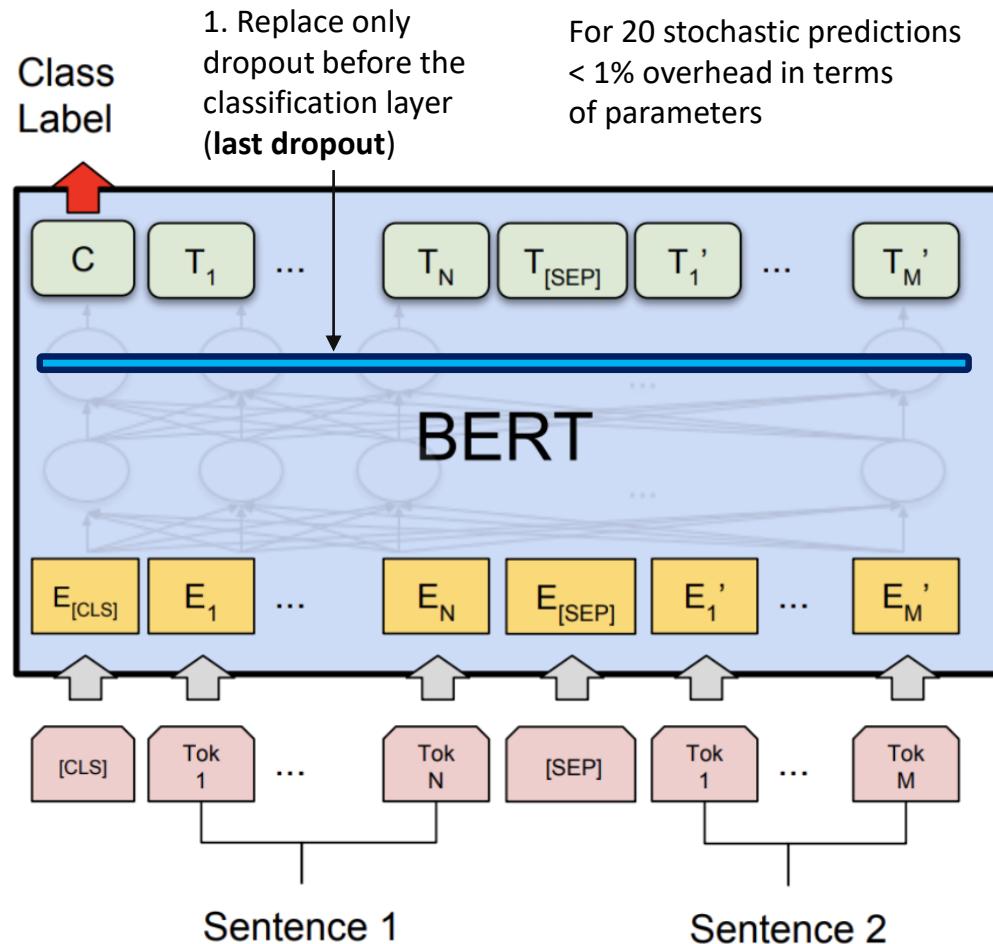
where $\bar{p}^c = \frac{1}{T} \sum_t p_t^c$ the probability for a class c averaged across T stochastic forward passes.

Bayesian active learning by disagreement (BALD)

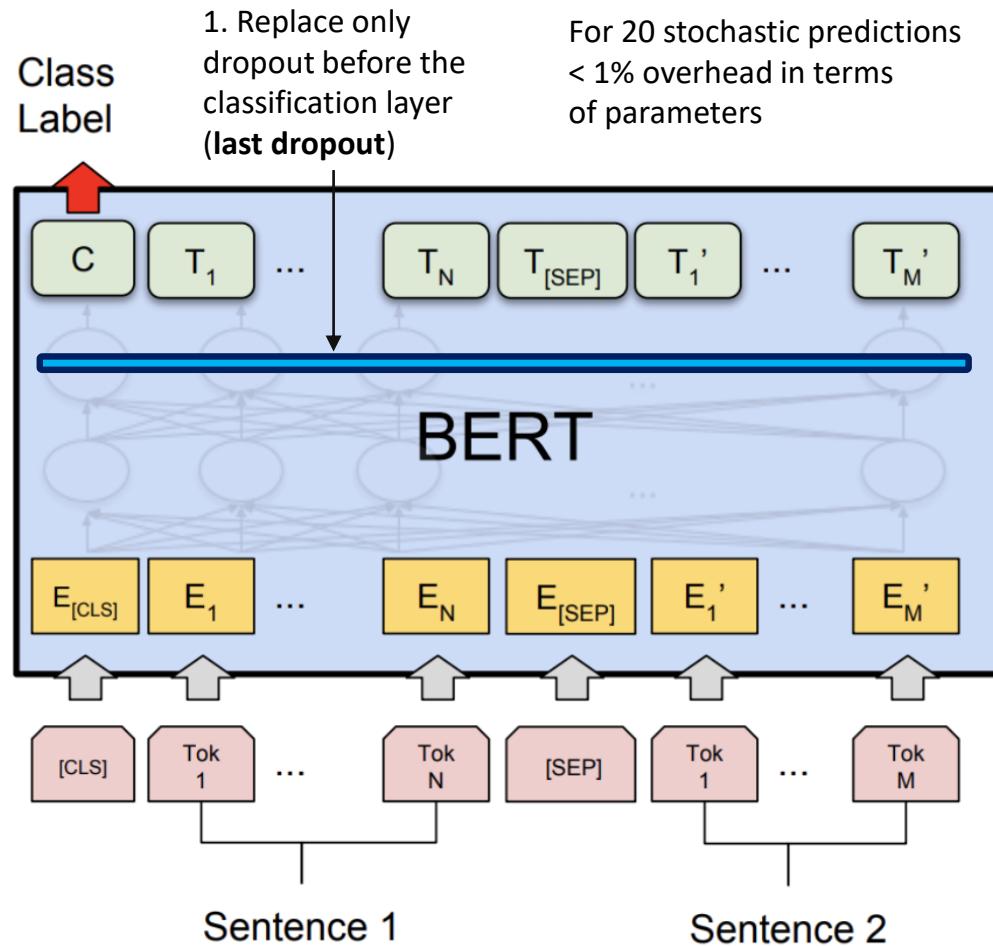
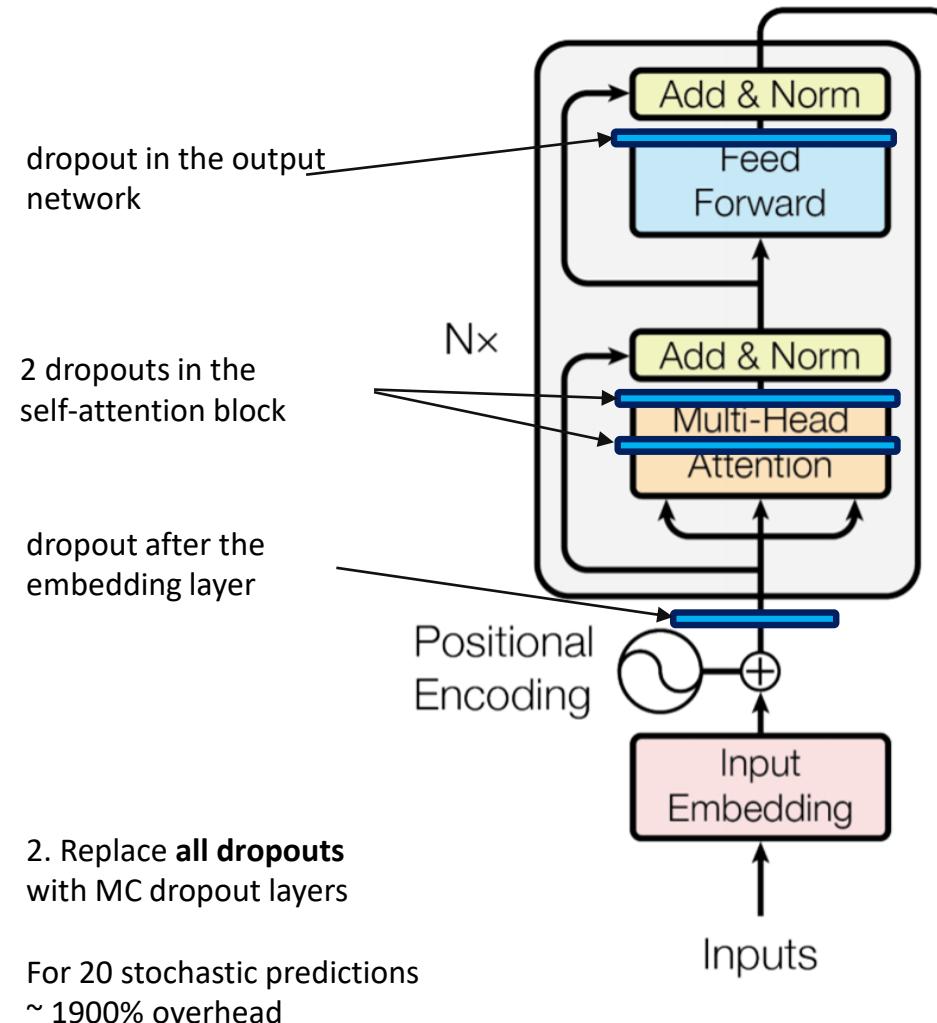
$$u_{\text{BALD}} = - \sum_{c=1}^C \bar{p}^c \log \bar{p}^c + \frac{1}{T} \sum_{c,t} p_t^c \log p_t^c$$



MC Dropout Options in Transformers



MC Dropout Options in Transformers

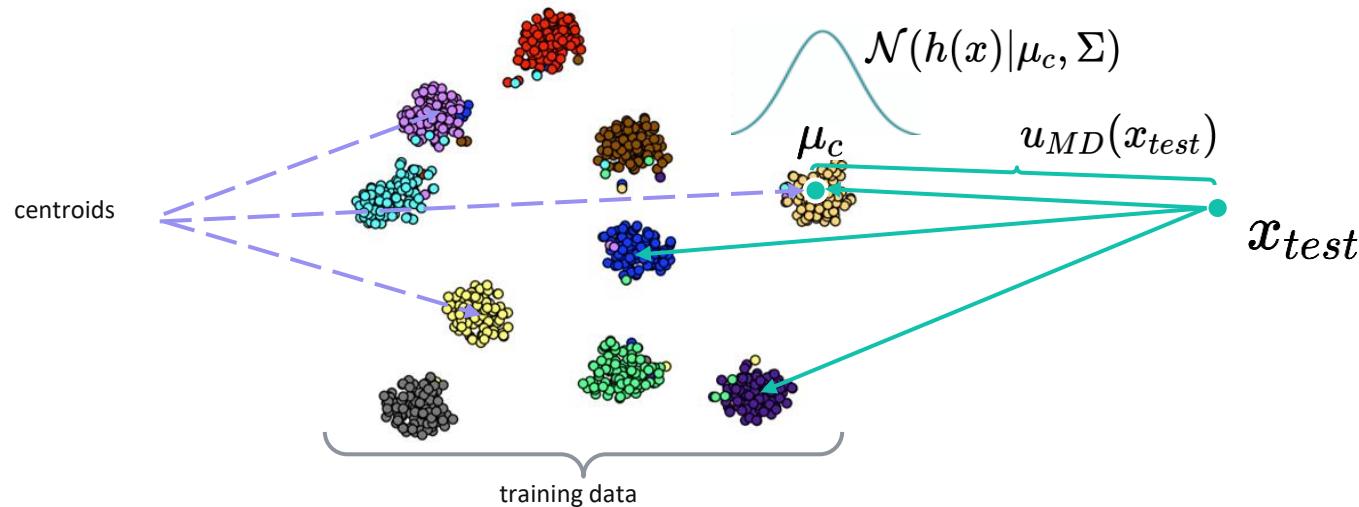


Mahalanobis Distance

Mahalanobis distance (MD) is proportional to the negative log-likelihood of a multivariate normal distribution, up to an additive constant:

$$u_{MD} = \min_{c \in C} (h_i - \mu_c)^T \Sigma^{-1} (h_i - \mu_c),$$

where h_i is a hidden representation of a i -th instance, μ_c is a centroid of a class c , and Σ is a covariance matrix for hidden representations of training instances.

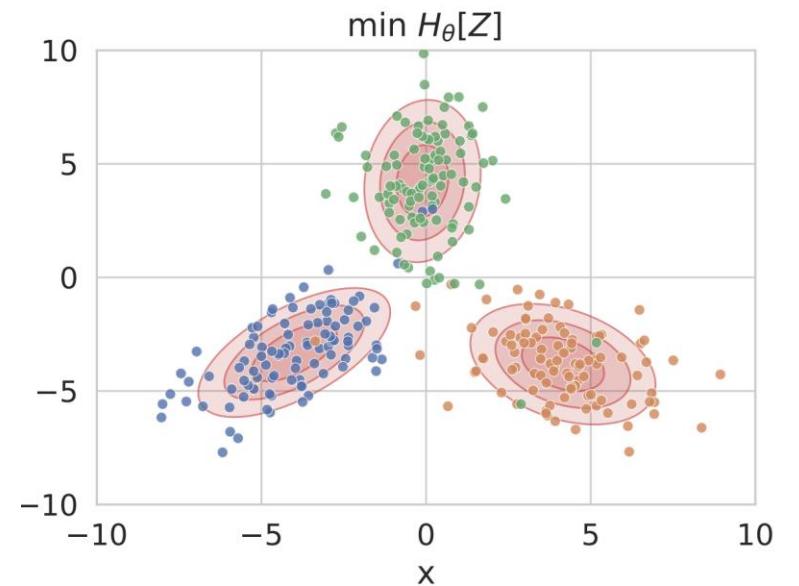


Deep Deterministic Uncertainty

$$\tilde{U}_{\text{E}}^{\text{DDU}}(\mathbf{x}) = \sum_{c \in C} p(h(\mathbf{x}) \mid y = c) p(y = c)$$

$$p(h(\mathbf{x}) \mid y = c) \sim \mathcal{N}(h(\mathbf{x}) \mid \mu_c, \Sigma_c)$$

$$p(y = c) = \frac{\sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}} \mathbf{1}[y_i = c]}{|\mathcal{D}|}$$



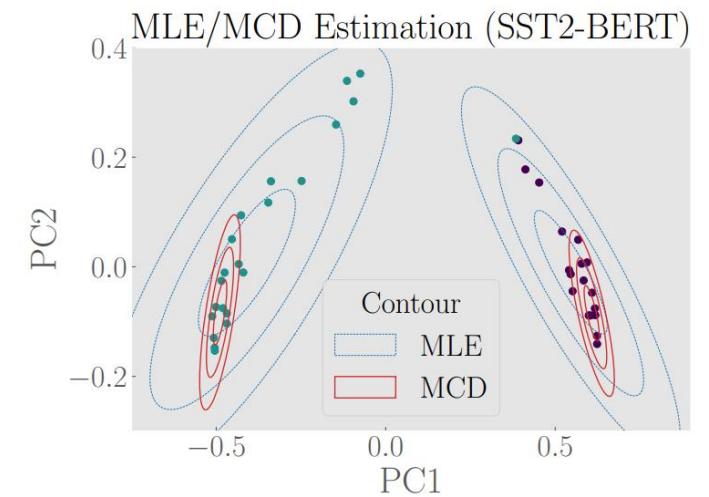
GMM with 3 components fitted to a synthetic dataset with 3 different classes

Robust Density Estimation

Idea: Removing outliers from the training dataset for parameter estimation in MD.

Method:

- Do not share the covariance matrix between classes
- Use Minimum Covariance Determinant (MCD) to find a subset of instances that minimizes the determinant of Σ for each individual class
- PCA with an RBF kernel.



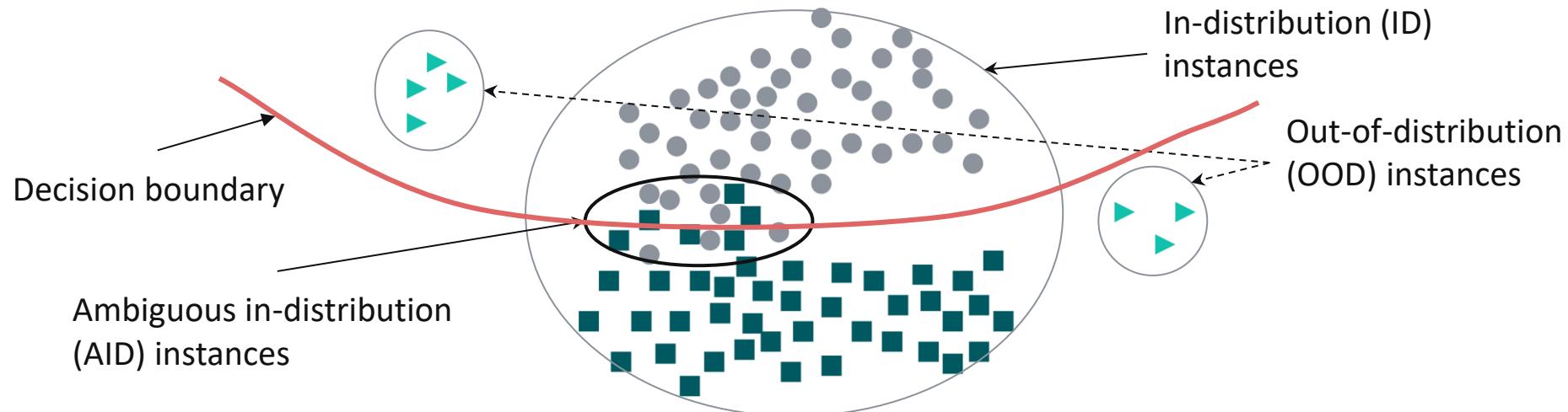
This results in a robust covariance estimation consisting of centered data points rather than outliers.

Motivation

Goal: build a reliable selective classification methods for ambiguous text classification tasks.

Classification mistakes usually arise from two sources:

- OOD areas – can be detected with epistemic UQ methods
- Ambiguous in-distribution (AID) areas – can be detected by aleatoric UQ



Motivation

Following the Bayesian approach, the **total** uncertainty of a model prediction of an instance \mathbf{x} for the given training dataset is computed as follows:

$$U_T(\mathbf{x}) = U_A(\mathbf{x}) + U_E(\mathbf{x}),$$

where $U_A(\mathbf{x})$ is aleatoric uncertainty and $U_E(\mathbf{x})$ is epistemic uncertainty.

Methods for quantifying epistemic uncertainty:

- Mahalanobis Distance (MD)
- Robust Density Estimation (RDE)
- Deep Deterministic Uncertainty (DDU)

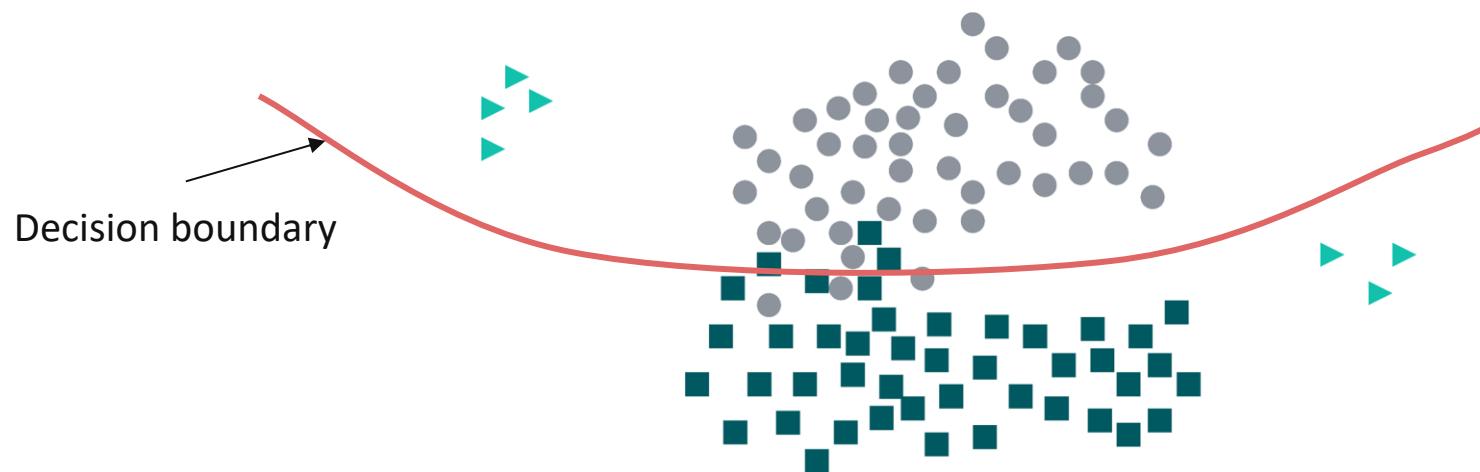
Methods for quantifying aleatoric uncertainty:

- Softmax response (SR)
- Entropy

Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ -parameters , $\delta_{\min}, \delta_{\max}, \alpha$ oint , ranking function $R(u, \mathcal{D})$

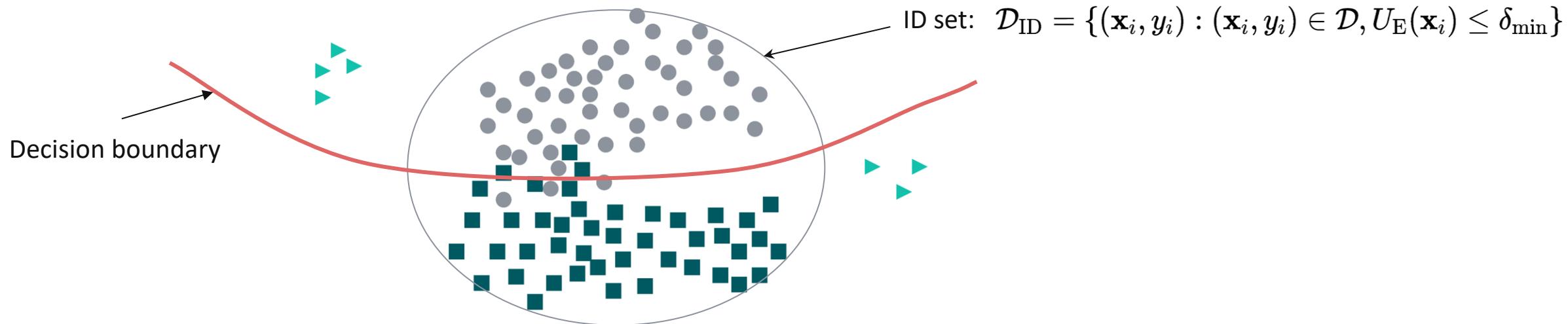
Output: Uncertainty estimates $U_{\text{HUQ}}(\mathbf{x})$



Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ -parameters , $\delta_{\min}, \delta_{\max}, \alpha$ oint , ranking function $R(u, \mathcal{D})$

Output: Uncertainty estimates $U_{\text{HUQ}}(\mathbf{x})$

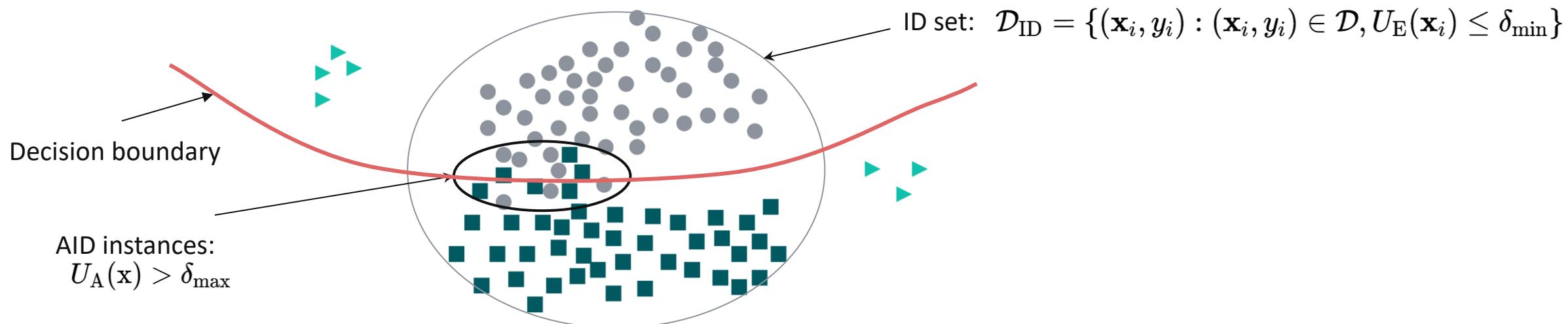


Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ -parameters , $\delta_{\min}, \delta_{\max}, \alpha$, ranking function $R(u, \mathcal{D})$

Output: Uncertainty estimates $U_{\text{HUQ}}(\mathbf{x})$

1. If this point belongs to the AID area: $U_{\text{HUQ}}(\mathbf{x}) = R(U_A(\mathbf{x}), D)$

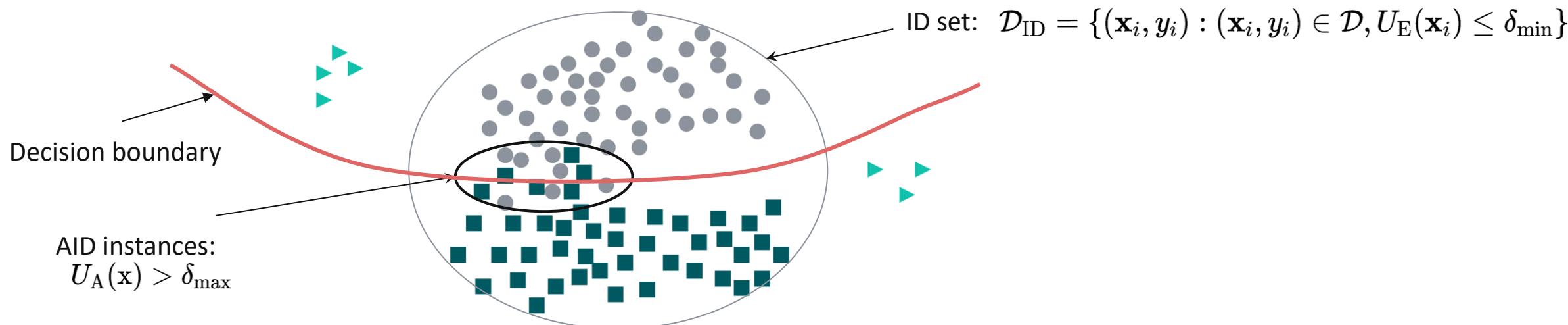


Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ -parameters $\delta_{\min}, \delta_{\max}, \alpha$, ranking function $R(u, \mathcal{D})$

Output: Uncertainty estimates $U_{\text{HUQ}}(\mathbf{x})$

1. If this point belongs to the AID area: $U_{\text{HUQ}}(\mathbf{x}) = R(U_A(\mathbf{x}), D)$
2. If this point belongs to the ID area, but not to AID: $U_{\text{HUQ}}(\mathbf{x}) = R(U_A(\mathbf{x}), D_{\text{ID}})$

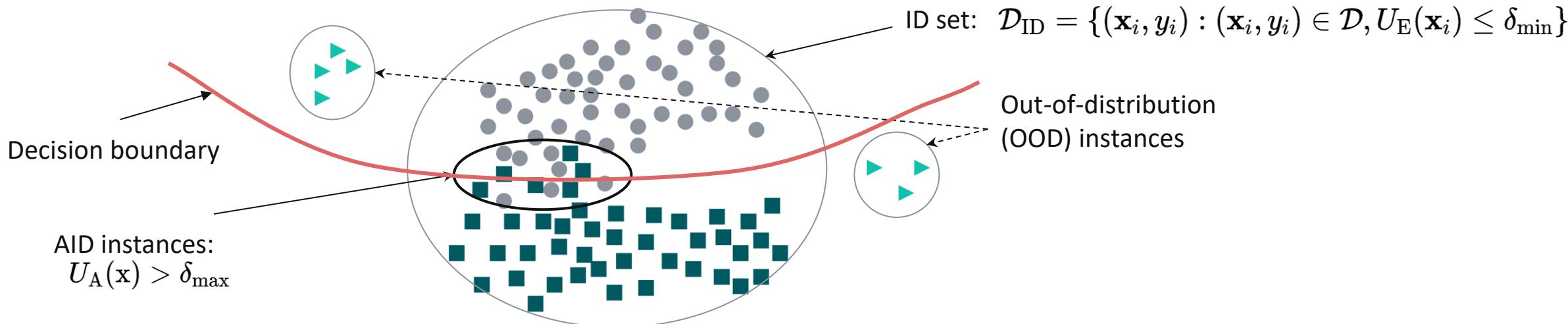


Hybrid Uncertainty Quantification (HUQ)

Input: Validation dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ -parameters $\delta_{\min}, \delta_{\max}, \alpha$, ranking function $R(\mathbf{x}, \mathcal{D})$

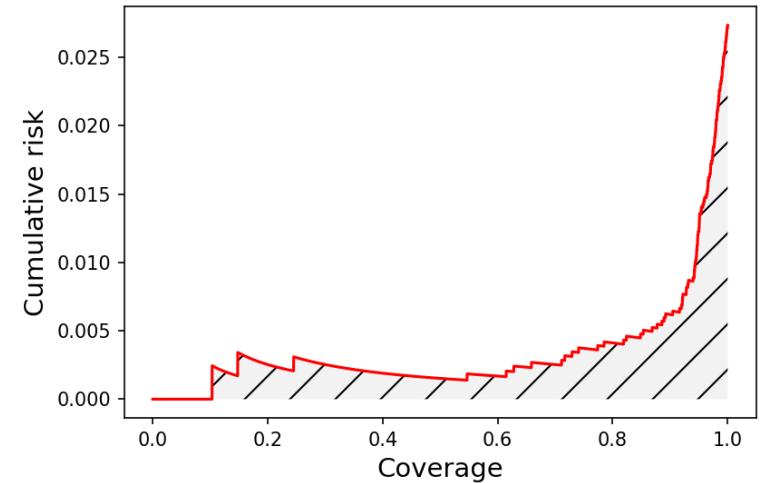
Output: Uncertainty estimates $U_{\text{HUQ}}(\mathbf{x})$

1. If this point belongs to the AID area: $U_{\text{HUQ}}(\mathbf{x}) = R(U_A(\mathbf{x}), D)$
2. If this point belongs to the ID area, but not to AID: $U_{\text{HUQ}}(\mathbf{x}) = R(U_A(\mathbf{x}), D_{\text{ID}})$
3. Otherwise: $U_{\text{HUQ}}(\mathbf{x}) = (1 - \alpha)R(U_E(\mathbf{x}), D) + \alpha R(U_A(\mathbf{x}), D)$

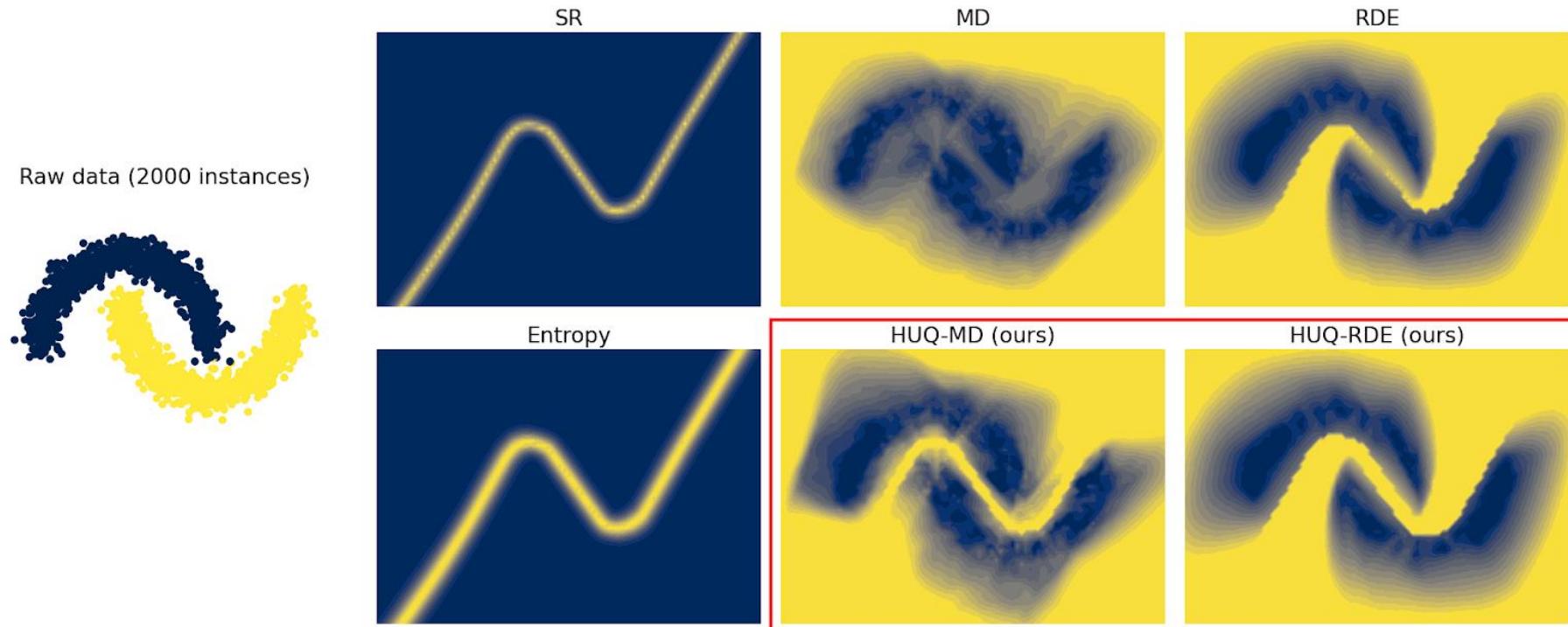


Experimental Setup

- **Models:** ELECTRA, BERT
- **Metrics:** AUC-RC↓ (area under the risk coverage curve)
- **Datasets:**
 - Paradetox, ToxiGen, Jigsaw, Twitter, ImplicitHate (Toxicity Detection)
 - SST-5, Amazon (Sentiment Analysis)
 - 20 News Groups



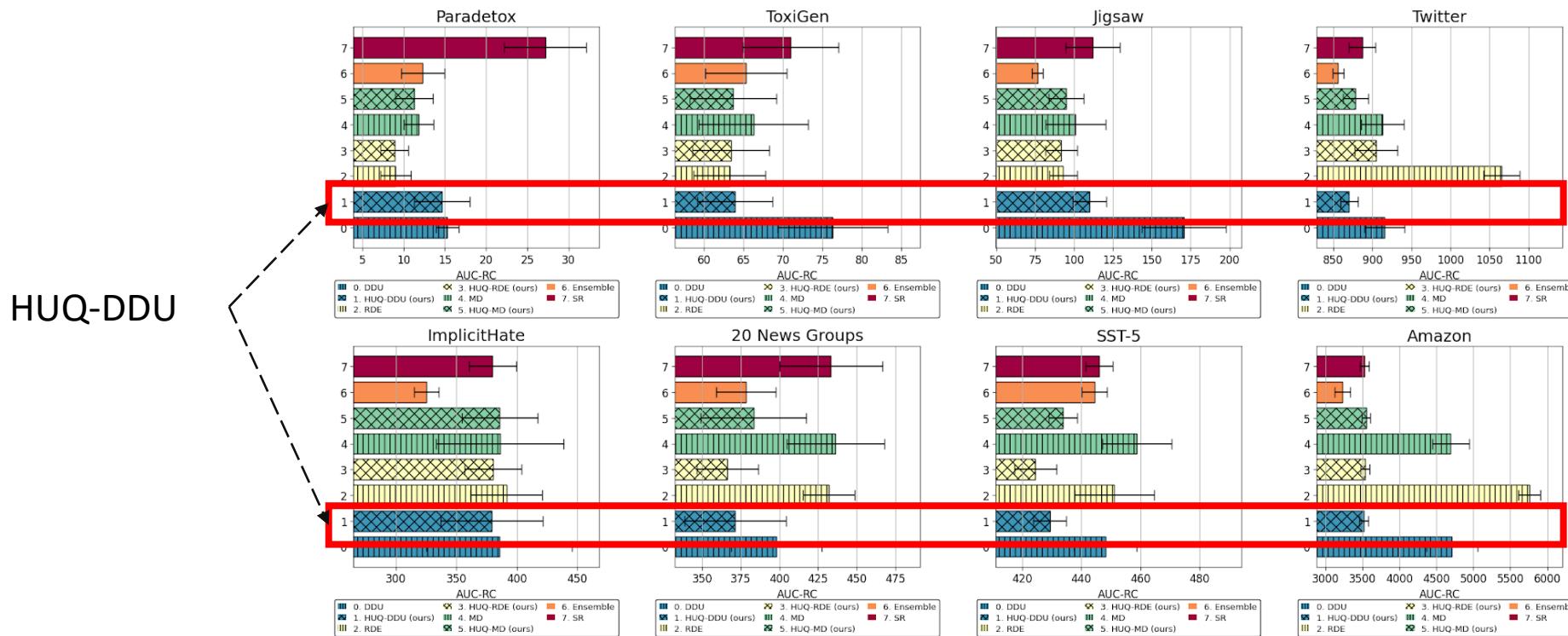
Toy Example



- HUQ correctly identifies both regions with untrustworthy predictions: the area away from the training data distribution and the area around the model decision boundary.

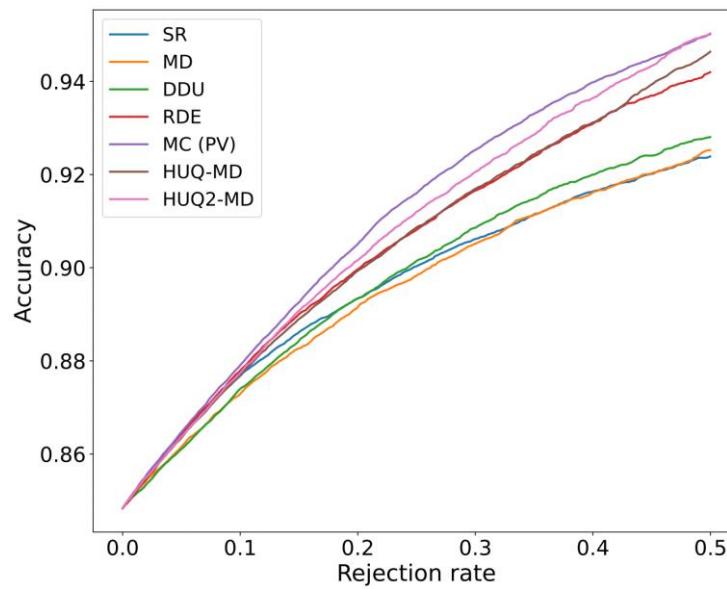
Results

Hybrid uncertainty quantification methods are usually **the best or the second best** after Ensemble. HUQ outperforms this baseline on Paradetox and SST-5.

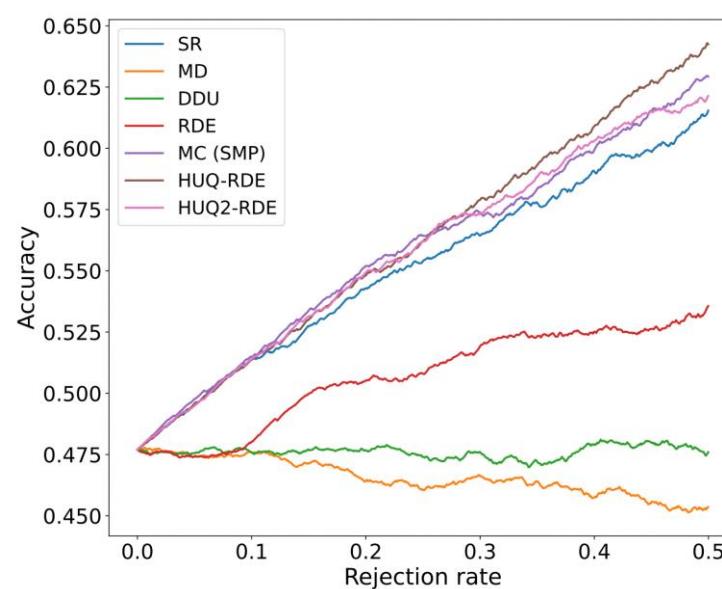


Results: Medical Diagnostics Application

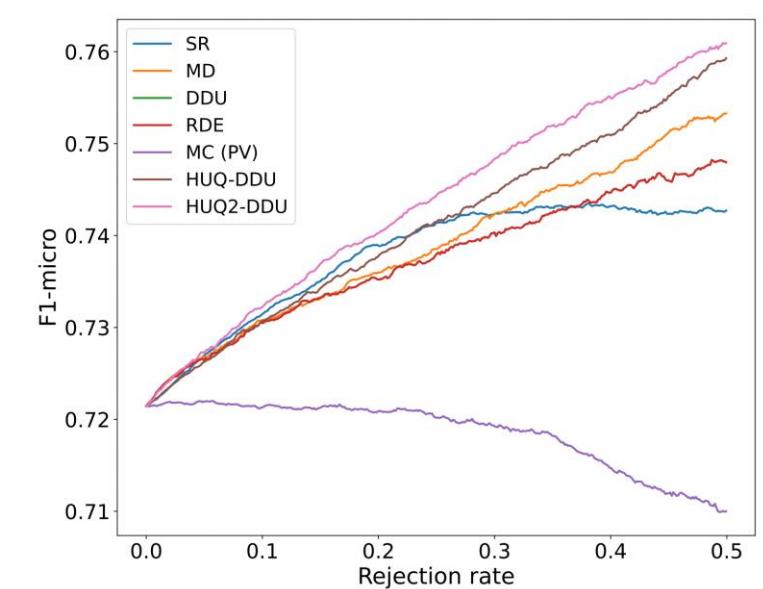
HUQ-2 and HUQ are consistently **the best or the second best** after MC dropout. While MC performs poorly on MIMIC-IV, HUQ-2 significantly outperforms all other methods



Mortality prediction



OV medical code prediction



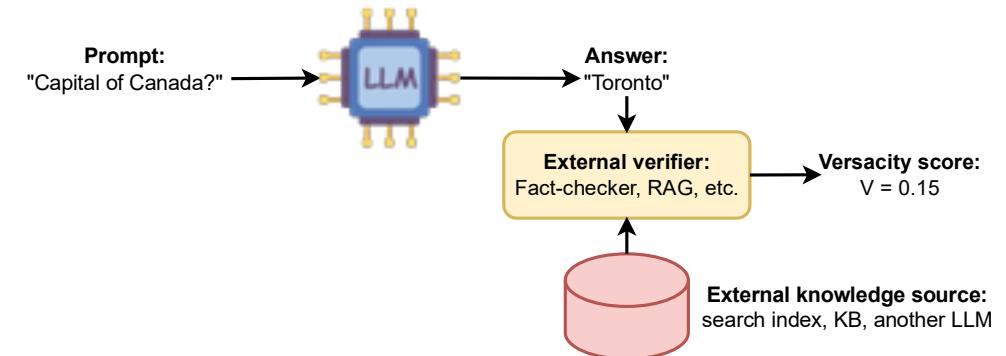
MIMIC-IV medical code prediction

03

UQ for Text Generation Models

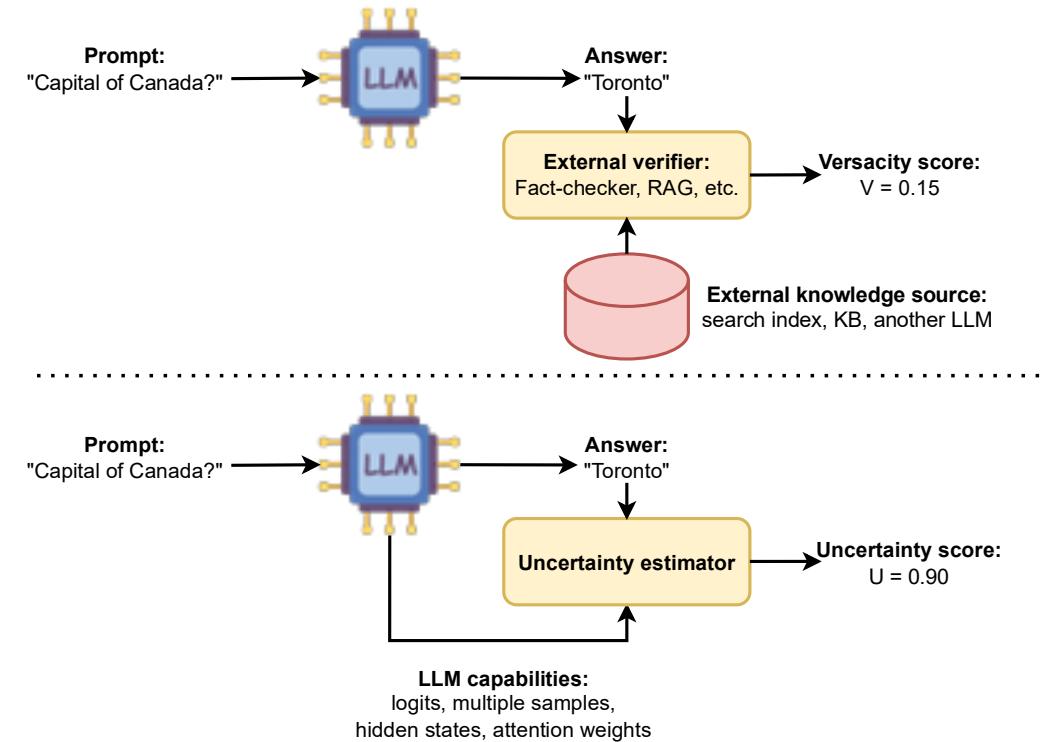
Uncertainty as a Universal Hallucination Detector

- Existing truthfulness assessment methods rely on external knowledge or large model ensembles, leading to **high computational costs** and limited applicability.



Uncertainty as a Universal Hallucination Detector

- Existing truthfulness assessment methods rely on external knowledge or large model ensembles, leading to **high computational costs** and limited applicability.
- **Uncertainty quantification (UQ)** offers a promising alternative, but it faces significant challenges in text generation.



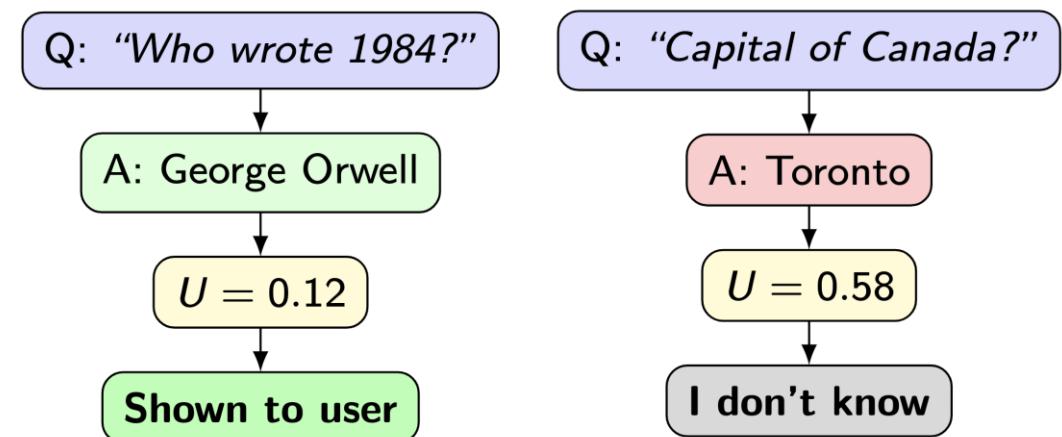
Reliability task: Selective generation

→ **Goal:** Deliver answers only when the LLM is confident.

→ **Selective rule:**

$$\text{output} = \begin{cases} \text{answer}, & U(x, y) < \tau \\ \text{"I don't know"}, & U(x, y) \geq \tau \end{cases}$$

→ By **rejecting** uncertain answers, we increase performance for remaining answers.



Reliability task: Claim-level hallucination detection

- If $U(x, y, c) \geq \tau$, highlight claim $c \in C(y)$ of LLM as potentially erroneous

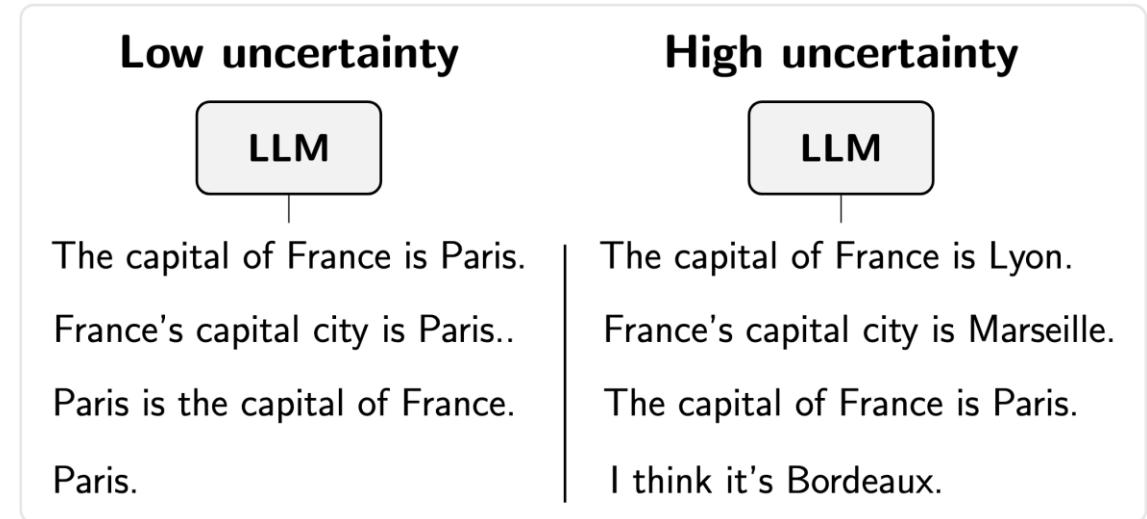
Tell me a bio of Madonna.

Madonna is an American singer, songwriter, actress, and business-woman. She was born on August 16, 1958, in Bay City, Michigan, and is best known for her provocative image and music. Madonna has sold over 300 million records worldwide, making her one of the best-selling music artists of all time. She has won numerous awards, including 20 Grammy Awards, a Golden Globe Award, and an Emmy Award. Madonna is also known for her philanthropic work and her activism on various social issues.

Uncertainty Quantification Methods for LLMs

- **Unsupervised methods:** extract information from logits of LLM or multiple generations, ask LLM about its confidence.

Weaknesses: limited effectiveness and computationally expensive.



Information-based Methods

For a given:

x - input sequence (prompt)

θ - model parameters

We can compute:

- Probability of the generated sequence:
$$P(\mathbf{y} \mid \mathbf{x}, \theta) = \prod_{l=1}^L P(y_l \mid \mathbf{y}_{<l}, \mathbf{x}, \theta)$$
- Maximum Sequence Probability (MSP):
$$U_{\text{MSP}}(\mathbf{y} \mid \mathbf{x}, \theta) = 1 - P(\mathbf{y} \mid \mathbf{x}, \theta)$$
- Perplexity or Normalized Sequence Probability (NSP):
$$U_{\text{Perplexity}}(\mathbf{x}) = \exp \left\{ -\frac{1}{L} \log P(\mathbf{y} \mid \mathbf{x}) \right\}$$

Sampling-based Methods

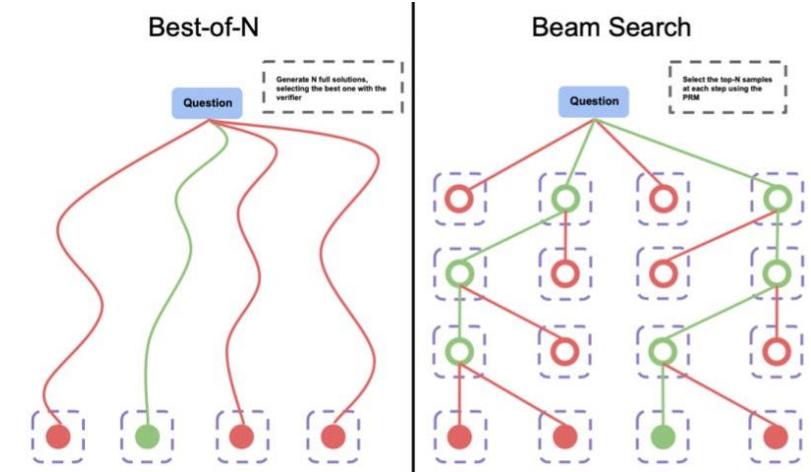
For a given:

x - input sequence (prompt)

Θ - model parameters

We can generate:

→ y_1, y_2, \dots, y_N - N sequences generated via sampling or beam search



Uncertainty score: quantifying consistency across multiple generations

Sampling-based Methods

- Construct a matrix S representing similarities between responses based on some semantic or lexical similarity measure, e.g. NLI entailment score or ROUGE

The capital of France is Paris.	-	1.00	0.92	0.90	0.30	0.25
Paris is the capital of France.	-	0.92	1.00	0.89	0.28	0.22
France's main city is Paris.	-	0.90	0.89	1.00	0.26	0.20
The capital of France is Lyon.	-	0.30	0.28	0.26	1.00	0.91
Lyon is the capital of France	-	0.25	0.22	0.20	0.91	1.00

Lexical Similarity

- Lexical Similarity: compare samples via lexical metrics, e.g., ROUGE or BLUE
- Uncertainty is the **average lexical similarity** between the generated answers

$$U_{\text{LexSim}}(\mathbf{x}) = 1 - \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N s(\mathbf{y}^i, \mathbf{y}^j)$$

Graph-based Uncertainty Measures

- Sampled sequences are nodes, pairwise similarities are edges
- Then similarity matrix S becomes an **adjacency matrix of the graph**
- Degree matrix: $D_{ii} = \sum_{j=1}^K S_{ij}$ Normalized Graph Laplacian: $L = I - D^{-\frac{1}{2}} S D^{-\frac{1}{2}}$
- Compute uncertainty by analyzing the graph connectivity:

1. Degree Matrix :

$$U_{Deg} = 1 - \text{trace}(D)/K^2$$

2. Sum of Eigenvalues of the Graph Laplacian:

$$U_{EigV} = \sum_{k=1}^K \max(0, 1 - \lambda_k)$$

Monte-Carlo Sequence Entropy

- Monte Carlo approximation of sequence entropy with N samples:

$$U_{MCSE}(\mathbf{x}) = -\frac{1}{N} \sum_{i=1}^N \log P(\mathbf{y}^i \mid \mathbf{x})$$

- To ensure balanced contributions to the overall uncertainty from sequences of different lengths, we can employ a length-normalized version:

$$U_{MCNSE}(\mathbf{x}) = -\frac{1}{N} \sum_{i=1}^N \log \bar{P}(\mathbf{y}^i \mid \mathbf{x})$$

Semantic Entropy

→ **Problem of MCSE:** semantic equivalence of different answers

Answer s	Likelihood $p(s x)$	Semantic likelihood $\sum_{s \in c} p(s x)$	Answer s	Likelihood $p(s x)$	Semantic likelihood $\sum_{s \in c} p(s x)$
Paris	0.5	0.5	Paris	0.5	0.9
Rome	0.4	0.4	It's Paris	0.4	
London	0.1	0.1	London	0.1	0.1
Entropy	0.94	0.94	Entropy	0.94	0.33

→ **Idea:** Group the answers into clusters based on their meaning over semantic clusters:

$\hat{P}(C_m | \mathbf{x})$, and calculate the entropy

$$U_{SE} = -\frac{1}{M} \sum_{m=1}^M \log \hat{P}(C_m | \mathbf{x})$$

CoCoA: Bridging Confidence and Consistency

→ A more flexible approach to confidence estimation can be achieved by combining various information-theoretic confidence measures with consistency analysis.

→ CoCoA proposes a multiplicative form of this combination:

$$C_{\text{CoCoA}}(\mathbf{y}^*, \mathbf{x}) = C_{\text{inf}}(\mathbf{y}^*, \mathbf{x}) \cdot C_{\text{cons}}(\mathbf{y}^*, \mathbf{x})$$

→ C_{inf} can be any information-theoretic confidence estimate, such as sequence probability, perplexity, mean token entropy etc., while C_{cons} is defined as:

$$C_{\text{cons}}(\mathbf{y}^*, \mathbf{x}) = \frac{1}{N} \sum_{i=1}^N s(\mathbf{y}^*, \mathbf{y}^i)$$

Reflexive

→ Black-box:

Provide your best guess and the probability that it is correct (0.0 to 1.0) for the following question. For example:

Guess: <most likely guess>

Probability: <the probability between 0.0 and 1.0 that your guess is correct>

Question: Who was the first president of the United States?

→ White-box:

Question: Who was the first president of the United States?

Proposed Answer: George Washington was the first president.

Is the proposed answer:

- (A) True
- (B) False

The proposed answer is:

→ Resulting confidence is based on the probability of the token encoding “True”:

$$U_{PTrue}(y) = 1 - P("True" | x, y)$$

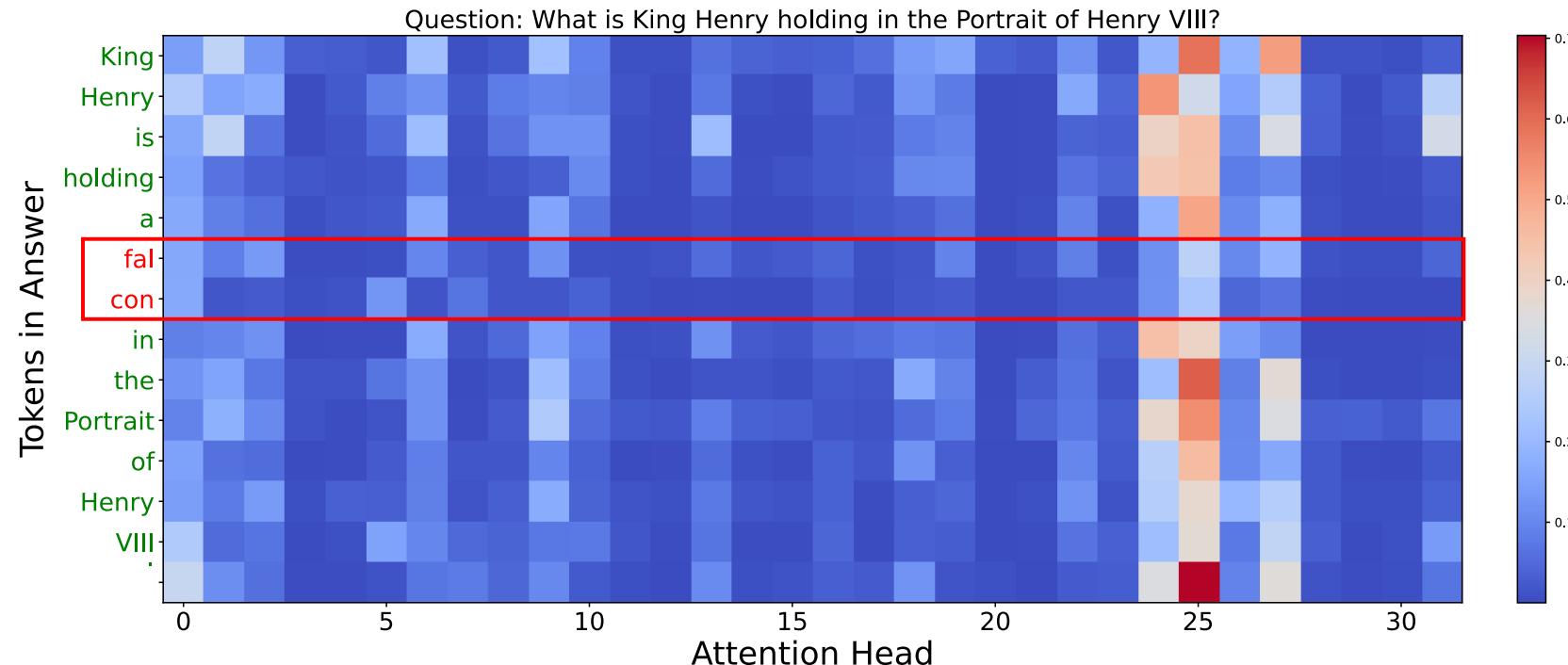
Identifying Hallucination-Associated Patterns in Attention Maps

Idea: identify patterns in attention maps that reveal hallucinations.

- *Question:* What is King Henry holding in the Portrait of Henry VII?
- *Correct Answer:* gloves and dagger.
- *LLM Answer (Llama-3.1 8b):* King Henry is holding a **falcon** in the Portrait of Henry VII.

Identifying Hallucination-Associated Patterns in Attention Maps

- Most attention heads show low weights
- **The 25th head:** high attention for correct tokens, low for the hallucinated token



Recurrent Attention-based Uncertainty Quantification: RAUQ

1. Select the most informative attention head per layer:

$$\mathbf{h}_l(\mathbf{y}) = \arg \max_{h=1 \dots H} \frac{1}{L-1} \sum_{i=2}^L a_{i,i-1}^{lh}$$

Recurrent Attention-based Uncertainty Quantification: RAUQ

1. Select the most informative attention head per layer:

$$\mathbf{h}_l(\mathbf{y}) = \arg \max_{h=1 \dots H} \frac{1}{L-1} \sum_{i=2}^L a_{i,i-1}^{lh}$$

2. Compute token-level layer-wise recurrent confidence score:

$$\mathbf{c}_l(y_i) = \begin{cases} P(y_i \mid \mathbf{x}), & \text{if } i = 1, \\ \alpha \cdot P(y_i \mid \mathbf{y}_{<i}, \mathbf{x}) + (1 - \alpha) \cdot a_{i,i-1}^{l \mathbf{h}_l} \cdot \mathbf{c}_l(y_{i-1}), & \text{if } i > 1. \end{cases}$$

Recurrent Attention-based Uncertainty Quantification: RAUQ

1. Select the most informative attention head per layer:

$$\mathbf{h}_l(\mathbf{y}) = \arg \max_{h=1 \dots H} \frac{1}{L-1} \sum_{i=2}^L a_{i,i-1}^{lh}$$

2. Compute token-level layer-wise recurrent confidence score:

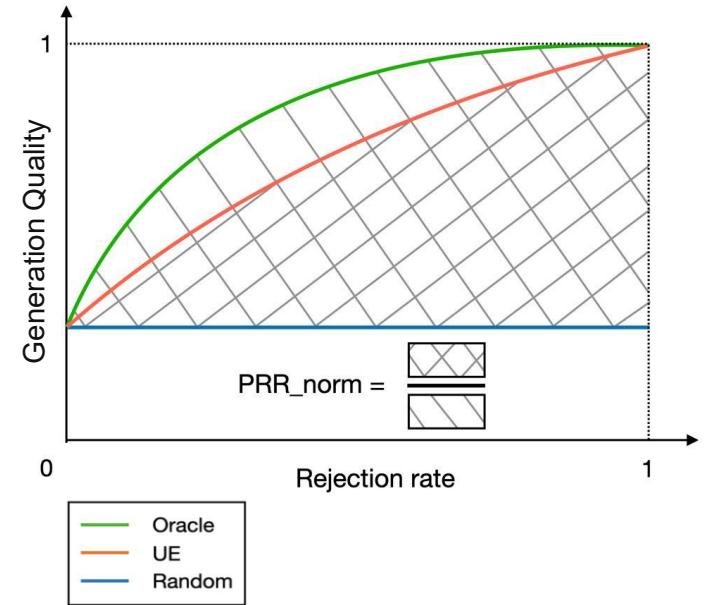
$$\mathbf{c}_l(y_i) = \begin{cases} P(y_i \mid \mathbf{x}), & \text{if } i = 1, \\ \alpha \cdot P(y_i \mid \mathbf{y}_{<i}, \mathbf{x}) + (1 - \alpha) \cdot a_{i,i-1}^{l \mathbf{h}_l} \cdot \mathbf{c}_l(y_{i-1}), & \text{if } i > 1. \end{cases}$$

3. Aggregate the token-level layer-wise uncertainty scores to the final score:

$$U_{RAUQ}(\mathbf{y}) = \max_{l \in \mathcal{L}} \left[-\frac{1}{L} \sum_{i=1}^L \log \mathbf{c}_l(y_i) \right]$$

Experimental Setup

- **Task:** sequence-level selective generation
- **Datasets:**
 - QA with short free-form answers: SciQ, CoQA, TriviaQA, MMLU
 - QA with long free-form answers: MedQUAD, TruthfulQA, GSM8k
 - Translation: WMT14 Fr-En, WMT19 De-En
 - Summarization: XSum, SamSum, CNN/DailyMail
- **LLMs:** Llama-3.1 8b, Gemma-2 9b, Qwen-2.5 7b, Falcon-3 10B
- **Metric:** PRR (50% max rejection)



Results

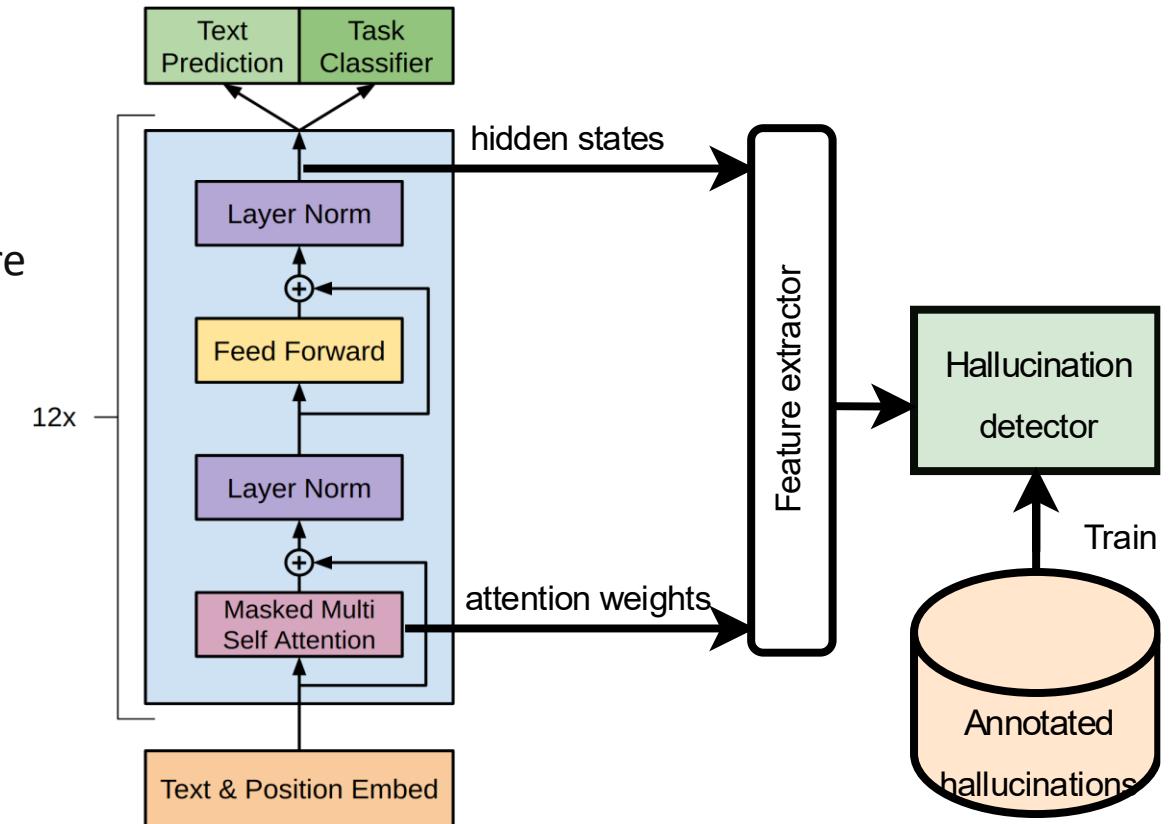
- RAUQ consistently outperforms prior methods with **minimal compute overhead (<1%)**
- **Best overall robustness** across models, tasks, and domains

UQ Method	Llama-3.1 8B			Qwen-2.5 7B			Gemma-2 9B			Falcon-3 10B			Mean
	QA	Summ	MT	QA	Summ	MT	QA	Summ	MT	QA	Summ	MT	
MSP	.347	.296	.397	.329	.151	.369	.361	.334	.381	.345	.177	.333	.318
Perplexity	.347	.419	.380	.343	.254	.406	.383	.375	.405	.356	.180	.439	.357
CCP	.285	.307	.340	.271	.186	.327	.329	.345	.320	.299	.128	.287	.285
Attention Score	.014	.126	.178	.038	.130	.142	.064	.103	.146	.054	.192	.089	.106
Focus	.320	.335	.361	.264	.186	.380	.416	.340	.385	.313	.139	.362	.317
Simple Focus	.342	.306	.415	.342	.136	.399	.396	.322	.422	.351	.095	.385	.326
DegMat NLI Score entail.	.306	.118	.239	.356	.154	.275	.337	.138	.259	.352	.132	.222	.241
Ecc. NLI Score entail.	.274	-.008	.284	.322	.002	.306	.298	.020	.290	.327	.038	.281	.203
EVL NLI Score entail.	.293	.114	.217	.349	.154	.245	.332	.133	.252	.351	.135	.206	.232
Lexical Similarity Rouge-L	.250	.131	.324	.334	.131	.327	.306	.161	.342	.285	.084	.275	.246
EigenScore	.232	.078	.285	.298	.061	.302	.267	.106	.226	.247	.051	.236	.199
LUQ	.287	.173	.214	.351	.196	.213	.344	.206	.259	.335	.121	.196	.241
Semantic Entropy	.254	.117	.315	.281	.092	.317	.291	.126	.337	.320	.133	.291	.240
SAR	.310	.170	.370	.351	.153	.393	.361	.235	.414	.334	.094	.337	.294
Semantic Density	.330	.153	.264	.352	.110	.291	.375	.167	.255	.358	.141	.280	.256
RAUQ	.396	.428	.452	.358	.213	.438	.421	.392	.473	.392	.181	.465	.384

Uncertainty Quantification Methods for LLMs

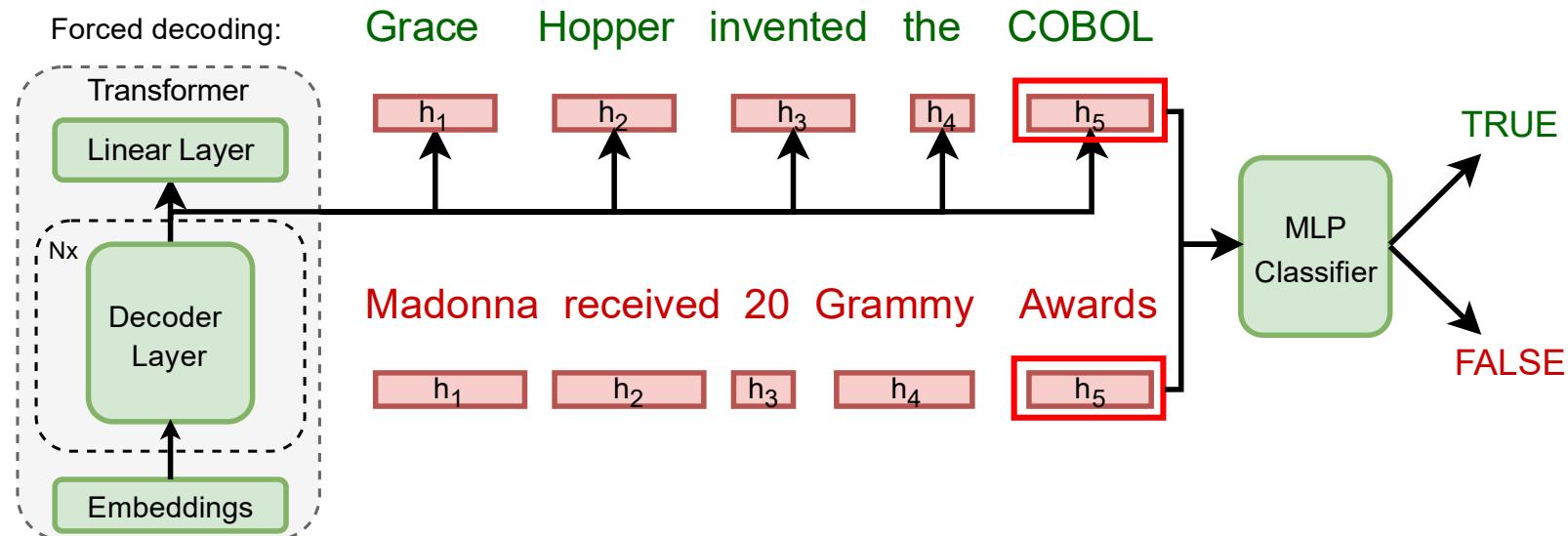
- **Supervised methods:** train a lightweight classifier on the information from the internal layers of LLMs to predict hallucinations.

Weaknesses: overfit to a particular domain and require annotated training data.



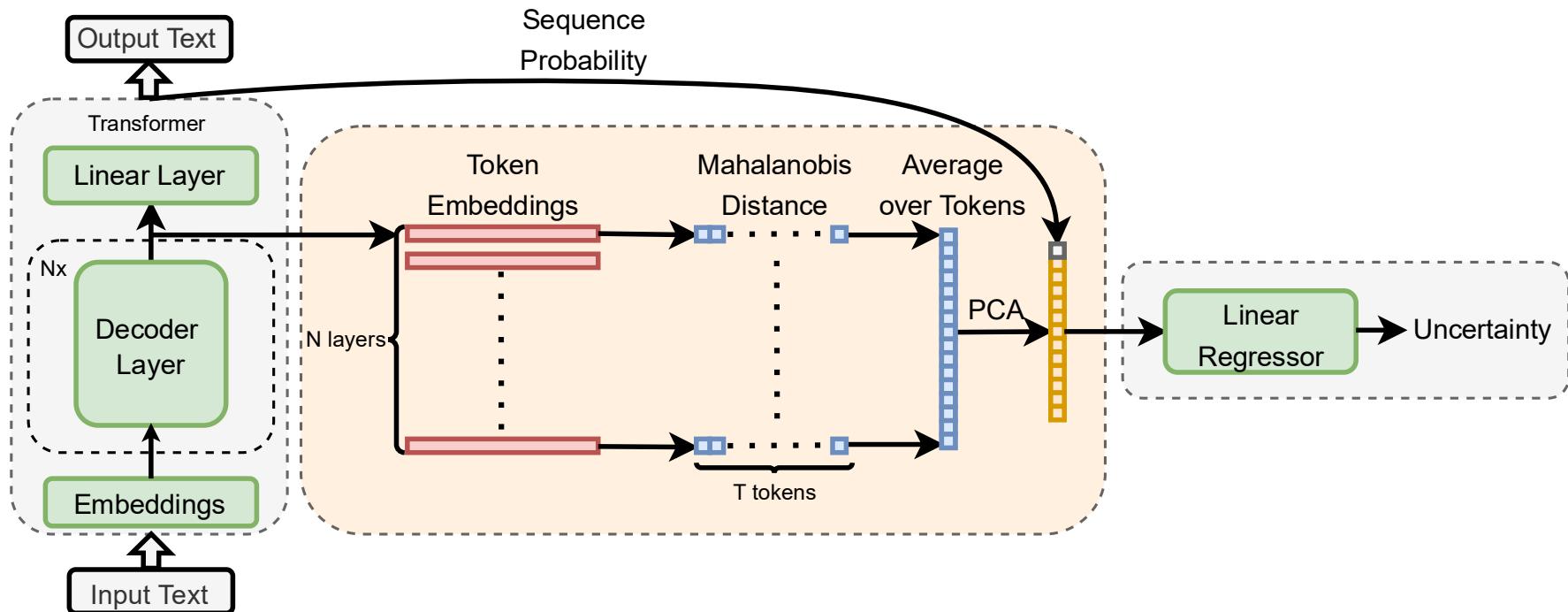
Statement accuracy prediction based on language model activations: SAPLMA

Idea: train on decoder layer activations to predict when LLM is uncertain.



Supervised average token-level relative Mahalanobis distance

Idea: aggregate token-level Mahalanobis distances to the cluster of “good” answers across all layers.

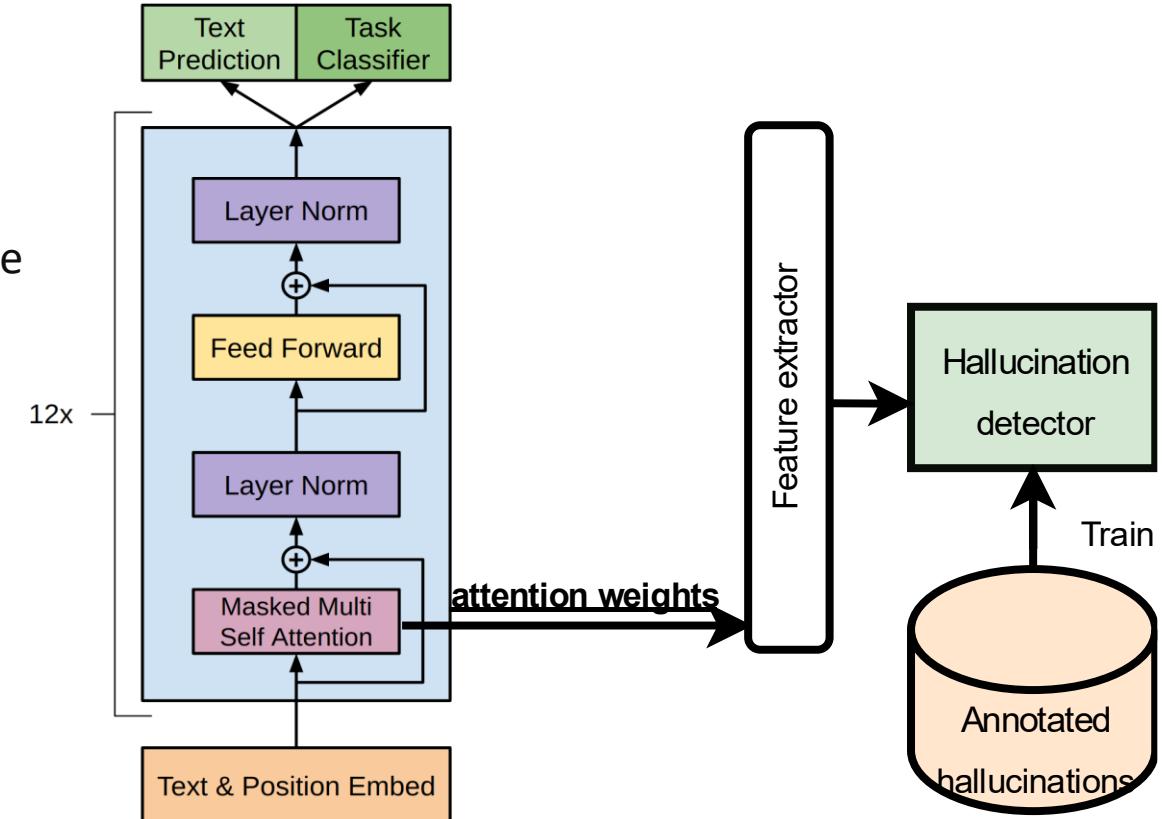


Uncertainty Quantification Methods for LLMs

- **Supervised methods:** train a lightweight classifier on the information from the internal layers of LLMs to predict hallucinations.

Weaknesses: overfit to a particular domain and require annotated training data.

- **Attention-based** supervised methods emerge as the most effective approach.



Conditional Dependency of Generation Steps

Problem: LLMs provide the conditional probability distribution, assuming all previous tokens are correct.

Conditional Dependency of Generation Steps

Problem: LLMs provide the conditional probability distribution, assuming all previous tokens are correct.

$$P(y_i \mid \mathbf{y}_{<i}, \mathbf{x})$$

We need the probability that does not depend on previously generated tokens:

$$P(y_i \mid \mathbf{x})$$

Toy simplification (1-step dependency): assume
("T") or false ("F").

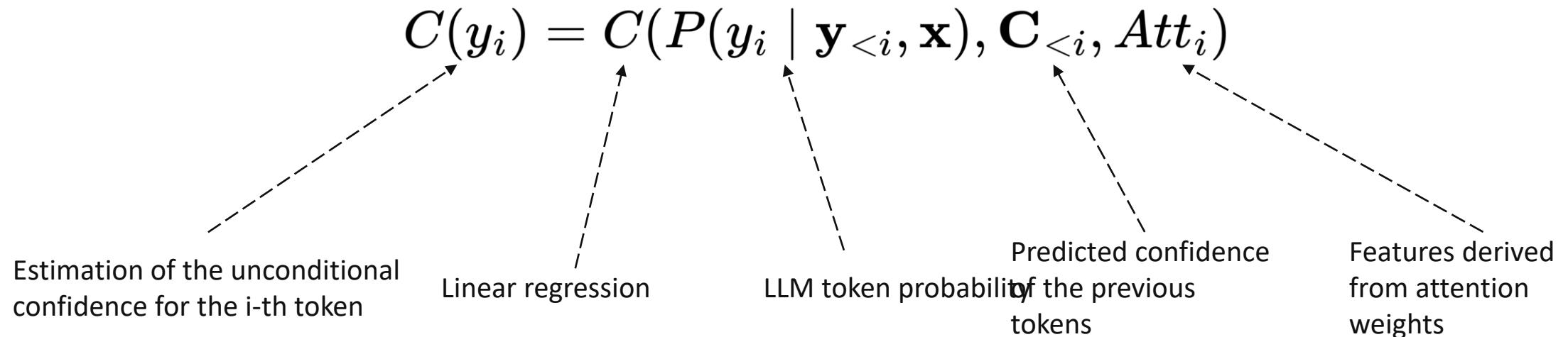
and LLM generates only tokens that are true

$$P(y_i \mid \mathbf{y}_{<i}) \approx P(y_i \mid y_{i-1})$$

$$\begin{aligned} P(y_i=T) &= P(y_i=T \mid y_{i-1}=T) P(y_{i-1}=T) \\ &\quad + P(y_i=T \mid y_{i-1}=F) (1 - P(y_{i-1}=T)) \end{aligned}$$

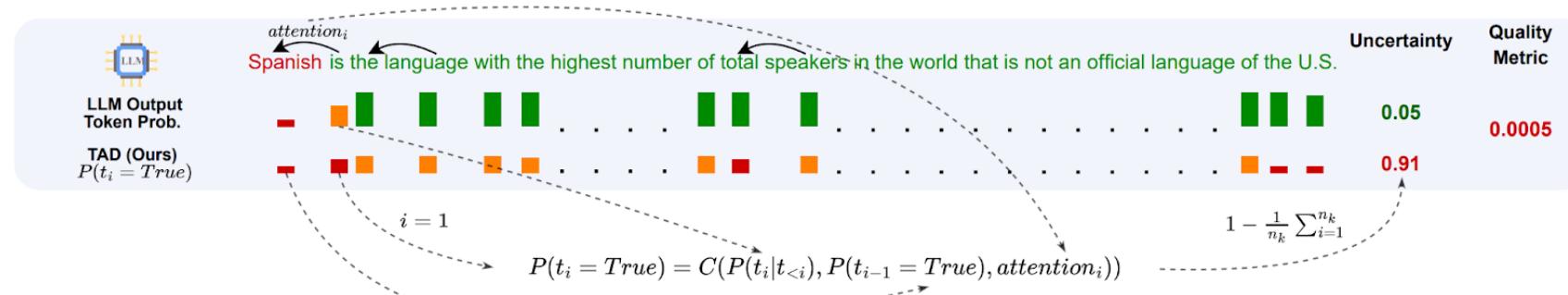
Trainable Attention-based Dependency (TAD)

Idea: attention implicitly encodes recurrent conditional dependency between generation steps, which we can learn.



TAD: Inference Scheme

- TAD leverages the uncertainty from the previous step using a trainable model based on attention, resulting in a high overall uncertainty in the generated answer.



Experimental Setup

→ **Models:** Llama-3.1 8b, Gemma-2 9b, Qwen-2.5 7b

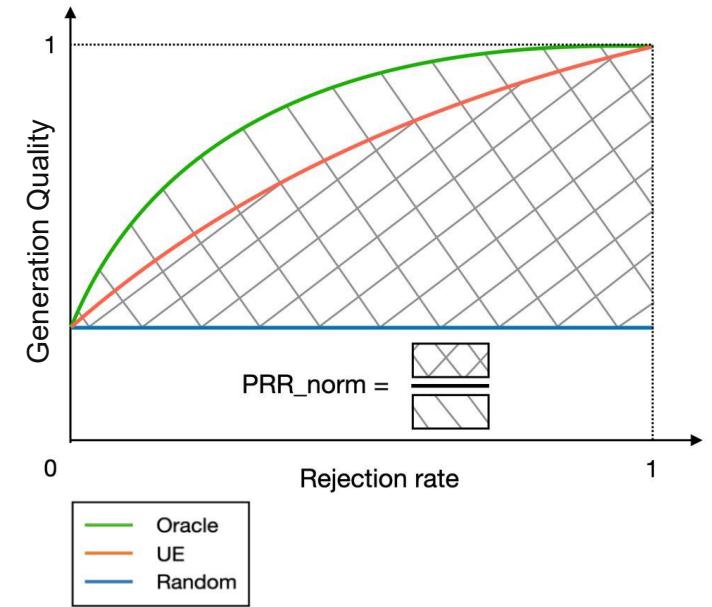
→ **Metrics:** Prediction Rejection Ratio (PPR) ↑

→ **Datasets:**

- QA with short free-form answers (SciQ, CoQA, TriviaQA, MMLU)
- QA with long free-form answers (MedQUAD, TruthfulQA, GSM8k)
- ATS (XSum, SamSum, CNN/DailyMail)
- MT (WMT19 De-En)

→ **UQ Baselines:**

- Information-based methods (MSP, Perplexity, CCP)
- Sampling-based methods (black-box methods, LexSim, Semantic Entropy, SAR)
- Supervised methods (Factoscope, SAPLMA, Sheeps)



Results: In-Domain Performance

→ TAD significantly outperforms other supervised and unsupervised methods across various tasks and models.

UQ Method	XSum	SamSum	CNN	WMT19	MedQUAD	TruthfulQA	CoQA	SciQ	TriviaQA	MMLU	GSM8k	Mean PRR	Mean Rank
	AlignScore	AlignScore	AlignScore	Comet	AlignScore	AlignScore	AlignScore	AlignScore	AlignScore	Acc.	Acc.		
MSP	.077	.012	.339	.451	.030	-.088	.291	.551	.610	.654	.268	.291	12.91
Perplexity	.237	.250	.172	.466	.131	.274	.270	.385	.601	.400	.456	.331	10.45
Mean Token Entropy	.233	.280	.149	.475	.143	.356	.263	.342	.603	.225	.469	.322	10.55
CCP	.240	.025	.365	.388	.015	-.104	.215	.468	.596	.412	.281	.264	14.36
Simple Focus	.109	.116	.191	.496	.021	.093	.321	.536	.620	.550	.310	.306	11.55
Focus	.209	.144	.110	.452	.123	.189	.249	.462	.568	.037	.273	.256	14.55
Lexical Similarity Rouge-L	.122	.057	.122	.370	.075	.159	.297	.507	.531	.274	.511	.275	14.00
EigenScore	.077	-.010	.073	.374	.018	-.018	.281	.510	.500	.243	.537	.235	16.18
EVL NLI Score entail.	.139	.145	.068	.294	.122	.306	.329	.519	.571	.236	.372	.282	13.09
Ecc. NLI Score entail.	-.047	.032	-.015	.368	.107	.146	.294	.535	.543	.237	.386	.235	15.45
DegMat NLI Score entail.	.138	.145	.075	.332	.122	.300	.329	.540	.574	.235	.402	.290	12.36
Semantic Entropy	.016	.074	.106	.366	.073	.087	.265	.491	.536	.165	.380	.233	17.18
SAR	.128	.129	.107	.445	.088	.185	.318	.526	.585	.288	.459	.296	12.09
LUQ	.228	.170	.131	.265	.096	.322	.337	.449	.580	.321	.331	.294	12.18
Semantic Density	.080	.122	.213	.358	.095	.300	.386	.514	.603	.203	.381	.296	12.27
Factoscope	.185	-.032	.001	.069	.447	.137	.122	.345	.406	.844	-.101	.220	17.27
SAPLMA	.245	.326	.009	.345	.018	.321	.001	.374	.497	.418	.440	.272	14.09
MIND	.220	.133	.263	.365	.517	.314	.346	.496	.608	.883	.738	.444	7.36
Sheeps	.361	.313	.258	.487	.391	.476	.357	.487	.663	.883	.710	.490	4.73
LookBackLens	.436	.386	.369	.539	.497	.485	.352	.600	.585	.873	.627	.523	3.55
SATRMD	.338	.322	.254	.525	.362	.254	.315	.547	.623	.885	.566	.454	5.55
TAD	.460	.416	.450	.553	.583	.500	.407	.563	.665	.893	.701	.563	1.27

Results: Out-of-Domain Performance

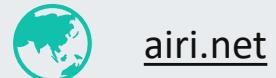
- Supervised methods suffer a significant **performance drop** on out-of-domain data.
- **TAD** is the best-performing method on out-of-domain QA datasets.

UQ Method	CoQA	SciQ	TriviaQA	MMLU	GSM8k	Mean PRR
	AlignScore	AlignScore	AlignScore	Acc.	Acc.	
MSP	.262	.459	.527	.535	.310	.419
SAR	.297	.439	.552	.275	.320	.377
Semantic Density	.380	.448	.571	.237	.197	.366
Factoscope	.016	.055	.161	.078	.049	.072
SAPLMA	-.030	.199	-.112	-.089	-.077	-.022
MIND	.044	.153	.237	.252	.230	.183
Sheeps	.092	.422	.295	.425	.323	.312
LookBackLens	.079	.365	.304	.422	.166	.267
SATRMD	.247	.349	.469	.205	.311	.316
TAD	.283	.529	.565	.512	.278	.434

Conclusions

The key findings demonstrate the significant potential of UQ methods to enhance the model's predictions in every NLP task:

- Uncertainty quantification is a **crucial component** of ML-based systems.
- For practical purposes in classification tasks, consider **density-based UQ** methods like DDU, MD, RDE, etc.
- For ambiguous datasets, consider using **hybrid uncertainty quantification**, e.g. DDU + Entropy.
- For LLMs, **supervised methods** achieve state-of-the-art results for in-domain but experience a significant drop in performance when applied to out-of-domain.
- **Attention matrices** provide valuable information into the truthfulness of generations.
- Not all methods are applicable for claim-level UQ.



[airi research institute](https://t.me/airi_research_institute)

[AIRI Institute](https://vk.com/AIRI_Institute)

Telegram

AIRI